

MONITORING WELLS 16 TO 20 INSTALLATION AND SAMPLING REPORT FORSEYS CLEANERS AND LAUNDRY 856 25TH STREET OGDEN, UTAH

PREPARED FOR: OGDEN CITY COMMUNITY & ECONOMIC DEVELOPMENT 2549 WASHINGTON BLVD, SUITE 420 OGDEN, UT 84401

ATTENTION: BRANDON COOPER

AGEC PROJECT NO. 1210149

MARCH 18, 2021

1.0 INTRODUCTION

This report presents a Monitoring Well Installation and Sampling Report for five additional groundwater monitoring wells installed in the vicinity of the Forsey Cleaners & Laundry facility at 856 East 25th Street in Ogden, Utah. Applied Geotechnical Engineering Consultants, Inc., (AGEC) was requested to install five additional groundwater monitoring wells and conduct sampling to help delineate the extent and degree of PCE/TCE contamination present in the soil and/or groundwater in the vicinity of the former dry cleaner on the property. This report presents a summary of the additional monitoring well installation, soil and groundwater sampling activities and the initial environmental sampling test results for the additional well locations.

1.1 Site Background and Previous Sampling Results

A house was built by 1906 at 856 East 25th Street and was converted into the East Side Nursing Home by the mid 1950s. The house/nursing home was removed by 1961 and replaced with the existing laundry facility at 856 East 25th Street. The building was occupied by Norge Cleaning Village/Meyer's Norge Village from the 1960s to the late 1980s. In the late 1980s, the business name changed to Forsey's Norge self serve laundry and then Forsey's Laundry and Cleaning Village, 4-C's Wash Basin and Four Seasons Laundromat. We understand that dry cleaning has not been performed on site since about 1987.

The property is listed on the RCRA Generator list for Meyers Cleaning Village at 856 25th Street. The facility was a small quantity generator of hazardous waste. The drycleaning facility was closed in early 1987 when the dry cleaning began to be performed at another facility. The business was sold in January 1988. The Forsey laundry does not perform dry cleaning on site.

To help determine if the historical dry cleaner has impacted the property, AGEC conducted a limited subsurface sampling investigation by obtaining soil and groundwater samples and performing a soil vapor investigation with locations inside and outside the existing building. This sampling event was not intended to delineate the extent of the contamination, if present, in the soil vapor, soil or groundwater.

Two exterior borings (GP-1 and GP-2) were advanced near the west and north side of the northwest end of the building, presumably where the historical dry-cleaning equipment was located (Figure 1). Two soil vapor sampling points (PRT-1 and PRT-2) were sampled adjacent to the borings west of the building. Two indoor subslab soil vapor samples were obtained in the northwest room, presumably near the historical dry-cleaning equipment.

The four soil samples did not contain concentrations of the analyzed contaminants above the laboratory reported detection limits with the exception of 2-Butanone also known as methyl ethyl ketone (MEK) and tetrachloroethylene (PCE). The contaminant concentrations were compared to the residential and commercial November 2019 EPA Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. RSLs are not necessarily cleanup standards. The RSL's role in site "screening" is to help identify areas, contaminants, and conditions that may require further attention at a particular site. The detected concentrations of MEK and PCE were below the respective residential RSL values.

The only contaminant detected in the two groundwater samples above the laboratory method detection limits was PCE (Table 2). The concentrations of PCE were 0.0422 mg/L (GP-1) and 0.00661 mg/L (GP-2). The EPA Maximum Contaminant Level (MCL) for PCE is 0.005 mg/L, so both concentrations exceeded the MCL.

The only VOCs detected above the residential VISL in the soil gas were 1,3-butadiene in sample PRT-2, chloroform in VP-2, naphthalene in VP-1, PCE in PRT-1, VP-1 and VP-2 and trichloroethene (TCE) in VP-1 and VP-2.

The concentrations of PCE were significantly higher in the two subslab samples than the exterior PRT samples. The degradation process of PCE produces daughter products as it works toward non-regulated, non-toxic compounds. The primary daughter products of PCE include TCE, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride.

According to the EPA, motor vehicle exhaust is a constant source of 1,3-butadiene and it is usually found in ambient air at low levels in urban and suburban areas. Potential sources of chloroform include chlorine-treated drinking water. Chlorinated drinking water can leak from buried water supply or sanitary sewer lines. A floor drain was within several feet of VP-2 and is likely the source of the chloroform. Naphthalene is found in cigarette smoke, car exhaust and diesel fuel.

Based on the limited initial sampling performed at the site, it appeared the PCE contamination is a result of a historical release near the former dry-cleaning equipment.

The sources of 1,3-butadiene, chloroform and naphthalene in the soil vapor samples are unknown. As they each were only detected in one of four samples, these compounds did not appear to be widespread contaminants on the property.

Findings of the study were reported to Ogden City Business Development under AGEC Project No. 1200034, dated January 29, 2020.

To help determine the soil and groundwater conditions on site, AGEC installed five groundwater monitoring wells on site (MW-1 to MW-5), in the vicinity of the previously detected groundwater contamination in borings GP-1 and GP-2 with wells east of the building (up gradient) and northwest, west and southwest of GP-1 (Figure 1). The five initial groundwater monitoring wells (MW-1 to MW-5) were installed on December 22, 2020.

Soil Results

PCE was detected in the soil samples from MW-2, MW-3, MW-4 and MW-5 above the laboratory method detection limits. The analytical test results (Table 1 in Appendix A) indicate that the concentrations of PCE were below the November 2020 EPA Residential or Industrial Screening Levels (SLs). No other compounds were detected above the laboratory detection limits in boring MW-1, MW-2, MW-3 or MW-4. No compounds of concern were detected in boring MW-1 above the laboratory method detection limits.

Groundwater Results

PCE was detected above the laboratory method detection limits in the groundwater samples from MW-2, MW-3 and MW-4 (Figure 3). The analytical test results (Table 2 in Appendix A) indicate that the groundwater samples from MW-2, MW-3 and MW-4 contain concentrations of PCE above the November 2020 EPA Maximum Contaminant Level (MCL). The only other compound detected above the laboratory method detection limits was TCE (0.00626 mg/L) in boring MW-3 which is above the TCE MCL of 0.005 mg/L.

Based on the soil gas, soil and groundwater samples obtained in the vicinity of the Forsey Cleaners & Laundry facility, a historical release of dry-cleaning solvent occurred. Concentrations of PCE and TCE are present in the groundwater above the MCL in at least one monitoring well. VOCs detected above the residential VISL in the soil gas were 1,3-butadiene in sample PRT-2, chloroform in VP-2, naphthalene in VP-1, PCE in PRT-1, VP-1 and VP-2 and TCE in VP-1 and VP-2. Soil contamination above the EPA SLs has not been encountered during the previous two sampling events.

As the PCE groundwater contamination was highest in MW-3, the extent of the groundwater plume was not delineated with this sampling investigation.

Findings of the study were reported to Ogden City Business Development under AGEC Project No. 1200908, dated January 28, 2021.

To help delineate the PCE/TCE plume at the site, five additional monitoring wells were installed down gradient (north and west) of MW-3. Four groundwater monitoring wells

were installed on site (MW-6 to MW-9), and one groundwater monitoring well was installed off site (MW-10), down gradient of the highest concentrations of PCE/TCE previously detected in the groundwater in MW-3 (Figure 1). The five additional groundwater monitoring wells (MW-6 to MW-10) were installed on January 20, 2021.

Soil Results

PCE was detected in the soil samples from MW-7 and MW-10 above the laboratory method detection limits. The analytical test results (Table 1 in Appendix A) indicate that the concentrations of PCE were below the November 2020 EPA Residential or Industrial Screening Levels (SLs). No other compounds were detected above the laboratory detection limits in borings MW-7 or MW-10. No compounds of concern were detected in borings MW-6, MW-8 or MW-9 above the laboratory method detection limits.

Groundwater Results

PCE was detected above the laboratory method detection limits in the groundwater samples from MW-6, MW-7, MW-8 and MW-10 (Figure 3). The analytical test results (Table 2 in Appendix A) indicate that the groundwater samples from MW-6, MW-7, MW-8 and MW-10 contain concentrations of PCE above the November 2020 EPA Maximum Contaminant Level (MCL). The only other compound detected above the laboratory method detection limits was TCE (0.0127 mg/L) in boring MW-10, which is above the TCE MCL of 0.005 mg/L and chloroform (0.00410 mg/L) in MW-7. The concentration of chloroform is below the MCL of 0.080 mg/L.

As the PCE groundwater contamination is above the MCL in MW-7, MW-8 and MW-10 the extent of the PCE groundwater plume was not delineated with this sampling investigation, and has been shown to impact the neighboring property to the west.

Findings of the study were reported to Ogden City Business Development under AGEC Project No. 1210017, dated January 28, 2021.

To help continue the delineation of the PCE/TCE plume at the site, one additional groundwater monitoring well was installed on site (MW-11), and four additional groundwater monitoring wells were installed off site (MW-12 to MW-15), down gradient of the concentrations of PCE/TCE previously detected in the groundwater in MW-10 (Figures 3 and 4). The five additional groundwater monitoring wells (MW-11 to MW-15) were installed on February 8, 2021.

Soil Results

PCE was detected in the soil samples from MW-12, MW-14 and MW-15 above the laboratory method detection limits. TCE was detected in the soil sample from MW-12.

The analytical test results (Table 1 in Appendix A) indicate that the concentrations of PCE and TCE were below the November 2020 EPA Residential or Industrial Screening Levels (SLs). No other compounds were detected above the laboratory detection limits in borings MW-12, MW-14 or MW-15. No compounds of concern were detected in borings MW-11 or MW-13 above the laboratory method detection limits.

Groundwater Results

PCE was detected above the laboratory method detection limits in the groundwater samples from MW-11, MW-12, MW-13, MW-14 and MW-15 (Figure 3). The analytical test results (Table 2 in Appendix A) indicate that the groundwater samples from MW-11, MW-12, MW-14 and MW-15 contain concentrations of PCE above the November 2020 EPA Maximum Contaminant Level (MCL). The only other compound detected above the laboratory method detection limits was TCE in borings MW-12 (0.026 mg/L) and MW-15 (0.0619 mg/L), which are above the TCE MCL of 0.005 mg/L (Figure 4).

As the PCE groundwater contamination is above the MCL in MW-11, MW-12, MW-14 and MW-15 the extent of the PCE groundwater plume was not delineated with this sampling investigation, and has been shown to impact the neighboring properties to the west of the former dry cleaner. As the concentrations of PCE and TCE are highest to date in MW-12, in the farthest northwestern well, there is a potential that multiple sources of the contaminants exist at the site.

Findings of the study were reported to Ogden City Business Development under AGEC Project No. 1210086, dated February 22, 2021.

2.0 ADDITIONAL SITE INVESTIGATION SAMPLING ACTIVITIES

To help continue the delineation the PCE/TCE plume at the site, five additional groundwater monitoring wells were installed off site (MW-16 to MW-20), down gradient of the concentrations of PCE/TCE previously detected in the groundwater in MW-12 (Figures 3 and 4). The five additional groundwater monitoring wells (MW-16 to MW-20) were installed on March 4, 2021.

2.1 Additional Monitoring Well Installation and Soil Sampling

Each well location was pre-marked and Blue-staked. The five additional wells were installed using hollow 3.25-inch inside diameter direct-push casing by drilling approximately 15 feet below the ground using a dual-tube sampling rod. The soil was logged and continuously sampled to the bottom of the borings in 5-foot intervals using disposable acetate liners. Groundwater was encountered in the borings at depths of

approximately 6 to 9 feet. Drilling and sampling equipment were decontaminated prior to arrival and between each boring with the use of a non-phosphate detergent (Alconox) and double rinsing in tap water with a pressure washer.

The soil samples obtained from the borings were screened on site with a photo-ionization detection (PID) meter. The PID was calibrated with a known concentration of isobutylene gas and zeroed at a background site location. Soil staining, odors and elevated PID readings were not detected during the sampling. As no evidence of contamination was detected in the borings, soil samples were obtained from each boring near the groundwater interface depth (6 to 9 feet below grade). A sample of the soil was also obtained from MW-20 at a depth of approximately 10 feet. Each soil sample was placed in two glass jars as provided by the analytical laboratory with no head space while wearing new disposable gloves. The sample jars were labeled with the location, depth, date and time, immediately stored in a cooler with ice and transported with chain of custody forms to a Utah-certified analytical laboratory, American West Analytical Laboratories (AWAL). The soil samples were analyzed for total VOCs.

The subsurface sampling indicated that borings MW-16 and MW-18 contain approximately ½-foot of fill consisting of silty gravel with sand. Boring MW-20 contained approximately 5 feet of fill consisting of silty sand with slight gravel. Approximately 6 to 10 feet of natural lean clay extends below the fill in borings MW-16, MW-18 and MW-20 and below the ground surface in borings MW-17 and MW-19. Natural lean clay interlayered with silty to poorly-graded sand with silt extends below the natural lean clay in the borings to the maximum depth investigated, approximately 14 feet. Boring logs are presented on Figures 5 to 8 with notes and legend on Figure 9.

The wells were constructed with 10 feet of 1.5-inch inside diameter, schedule 40 PVC well screen with prepacked sand (2.25 inch OD). The inert screen for the wells extended approximately $2\frac{1}{2}$ to 5 feet above the groundwater interface to allow for sample collection in the uppermost aquifer. Blank schedule 40 PVC riser pipe extended from the screen to within approximately 6 inches of the top of the surrounding ground surface. A solid end cap was placed on the bottom of each of the well screen sections. Each well was constructed with approximately 1 to 2 feet of silica sand extending above the screen section and then hydrated bentonite to within 1 foot of the ground surface. Each well was completed with a 7-inch diameter flush-mounted monument embedded in concrete.

As the borings were advanced with direct push methods, excess drill cuttings were not produced.

2.2 Well Sampling

Development of the wells was performed on March 10, 2021, approximately 6 days after the wells were installed. The new wells were developed with the use of a peristaltic pump and by pumping a minimum of three well casing volumes. Free-product was not observed in the wells or purge water. The purge water removed during the well development was collected in buckets and deposited in a steel 55-gallon drum with sealing lid that was placed on the north side of the existing Forsey building. The drum and purge water will be stored on site temporarily until disposal. Disposal is anticipated to be performed by Clean Harbors.

The tops of each of the five additional new well casings on the property were surveyed after installation so that the groundwater elevations and gradient can be calculated (Tables 4 and 5 in Appendix A). The depth to groundwater and the overall depth of the wells was measured in each monitoring well to determine the groundwater elevation in each well and the water column volume. The depth to water in the fifteen previous wells and the five additional new wells was measured on March 10, 2021, prior to purging and sampling. The wells were measured with a water level indicator probe to the nearest 0.01 foot. The probe was decontaminated between each monitoring well with non-phosphate soap (Alconox) and double rinsed in tap water. The groundwater elevations from the five new wells and fifteen previous wells (also measured on March 10, 2021) were used to calculate the approximate hydraulic gradient with the EPA Hydraulic Gradient Calculator (0.018 ft/ft) and groundwater flow direction across the property (approximately 272°) to the west-northwest (Figure 2).

Following the well development activities, groundwater samples were obtained on March 10, 2021, in general accordance with the sampling protocols as set by Utah State and the Environmental Protection Agency. The samples from each of the five wells were collected with the use of a peristaltic pump with low flow controls and new polyethylene tubing to fill the sample vials. A duplicate set of groundwater samples was obtained from monitoring well MW-17 (MW-1-Dup).

The samples were transferred directly to 40 ml glass vials equipped with Teflon septa and preserved with 2 percent hydrochloric acid as provided by the analytical laboratory. The sample vials were labeled, immediately stored in a cooler with ice to maintain an appropriate temperature of approximately 4°C and transported with chain of custody forms to AWAL. Chain of Custody forms supplied by the analytical laboratory were used. A set of trip blank samples prepared by the laboratory was stored with the five samples and duplicate and was submitted with the other samples for analytical testing for total VOCs.

2.3 Equipment Decontamination Procedures

Disposable well development and sampling equipment such as new polyethylene tubing and disposable gloves were used to help eliminate the possibility of cross-contamination and to simplify decontamination procedures.

3.0 LABORATORY RESULTS

During the March 4 and 10, 2021 sampling events, the six soil samples, five groundwater samples, one duplicate groundwater sample and the trip blank were submitted to AWAL for laboratory analyses to determine if significant concentrations of VOCs were present in the soil and/or groundwater on the property at the sampled locations. Quality control level 2+ was used by the analytical laboratory.

3.1 Soil Results

PCE was detected in the soil sample from MW-17 above the laboratory method detection limits. The analytical test results (Table 1 in Appendix A) indicate that the concentrations of PCE was below the November 2020 EPA Residential or Industrial Screening Levels (SLs). No other compounds were detected above the laboratory detection limits in borings MW-17. No compounds of concern were detected in borings MW-16, MW-18, MW-19 or MW-20 above the laboratory method detection limits.

3.2 Groundwater Results

PCE was detected above the laboratory method detection limits in the groundwater samples from MW-17 and MW-17-Dup (Figure 3). The analytical test results (Table 2 in Appendix A) indicate that the groundwater samples from MW-17 and MW-17A contain concentrations of PCE above the November 2020 EPA Maximum Contaminant Level (MCL). The only other compound detected above the laboratory method detection limits was TCE in borings MW-17 (0.0102 mg/L) and MW-17-Dup (0.0114 mg/L), which are above the TCE MCL of 0.005 mg/L (Figure 4).

3.3 Quality Control/Assurance Data Validation Report

The data validation conducted on the laboratory analytical data for the five soil and six groundwater samples is considered acceptable for use in meeting the project objectives. The samples were submitted to the analytical laboratory the same day they were sampled on March 4 and 10, 2021.

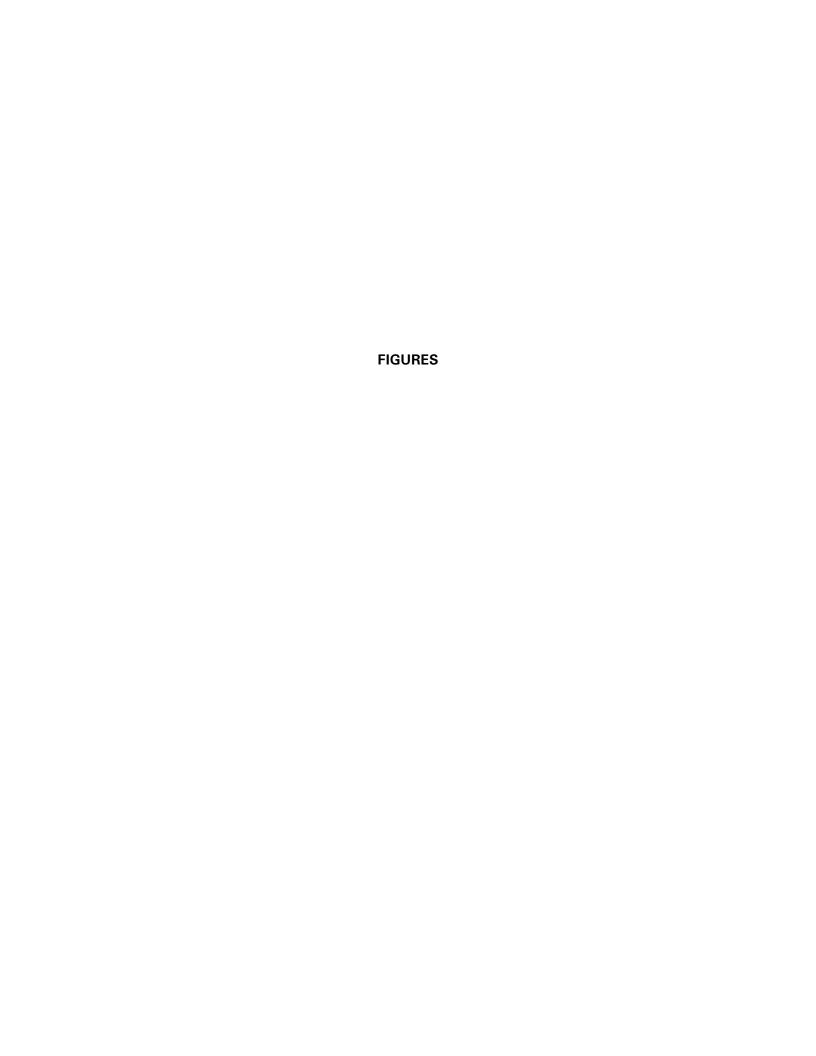
Chain of custody forms were filled out for the soil and groundwater samples. Copies of the AWAL test reports and QC summary reports are included in Appendix B of this report.

4.0 CONCLUSIONS

Based on the soil gas, soil and groundwater samples obtained in the vicinity of the Forsey Cleaners & Laundry facility, a historical release of dry-cleaning solvent occurred. Concentrations of PCE are present in the groundwater above the MCL in 12 of the 20 monitoring wells installed at the site. Concentrations of TCE are present in the groundwater above the MCL in five of the 20 monitoring wells installed at the site. VOCs detected above the residential VISL in the soil gas were 1,3-butadiene in sample PRT-2, chloroform in VP-2, naphthalene in VP-1, PCE in PRT-1, VP-1 and VP-2 and TCE in VP-1 and VP-2. Soil contamination above the EPA SLs has not been encountered during the previous four sampling events.

As the PCE groundwater contamination is above the MCL in MW-17 and MW-17A the extent of the PCE groundwater plume was not delineated with this sampling investigation, and has been shown to impact the neighboring properties to the west of the former dry cleaner. Based on the sampling to date, the PCE and TCE plumes likely extend below the north parking lots for the houses at 824 and 832 East 25th Street, west of MW-17.

5.0 LIMITATIONS

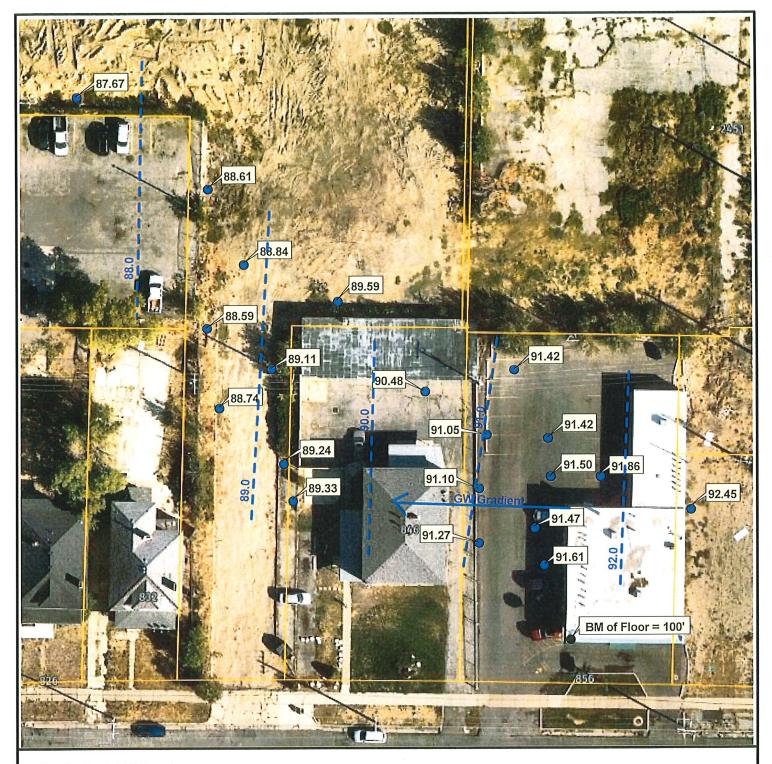

This study has been prepared in accordance with generally accepted environmental practices in this area for the use of the client. The conclusions of the report are based on information obtained from field observations and testing of the soil and groundwater samples obtained at the approximate locations indicated in the report and the data obtained from the field and laboratory testing.

Applied Geotechnical Engineering Consultants, Inc. does not represent that the soil and groundwater on the property contains no hazardous materials or other latent conditions beyond what was found for the compounds and locations tested.

APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS, INC.

Aprel R De Desey Prepared by Joseph R. DeGooyer

Remewed by Thomas R. Atkinson



From NearMap Aerial Photograph September 11, 2020

Approximate Scale 1 inch = 45 feet FORSEY CLEANERS & LAUNDRY 856 25TH STREET OGDEN, UTAH

From NearMap Aerial Photograph September 11, 2020

Approximate Scale 1 inch = 45 feet FORSEY CLEANERS & LAUNDRY 856 25TH STREET OGDEN, UTAH

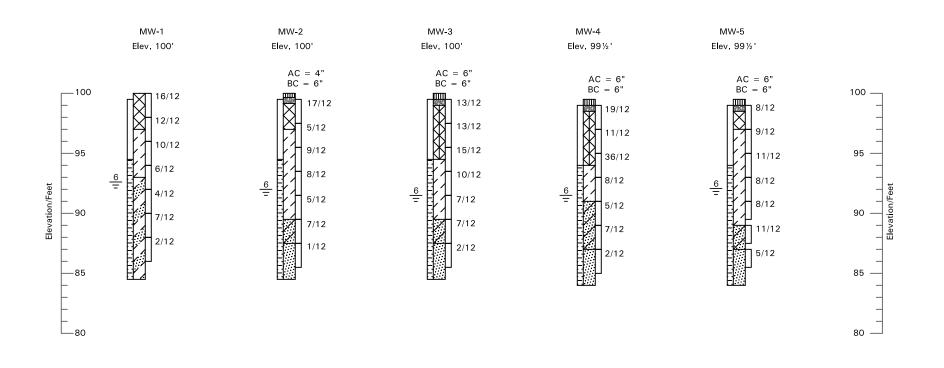
From NearMap Aerial Photograph September 11, 2020

Approximate Scale 1 inch = 45 feet FORSEY CLEANERS & LAUNDRY 856 25TH STREET OGDEN, UTAH

1210149

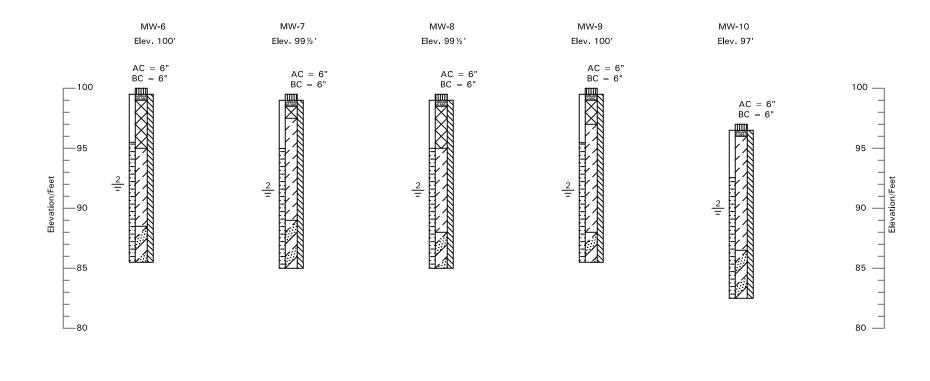
AFET

From NearMap Aerial Photograph September 11, 2020 TCE (mg/L)


Approximate Scale 1 inch = 45 feet

FORSEY CLEANERS & LAUNDRY 856 25TH STREET

1210149


AFET

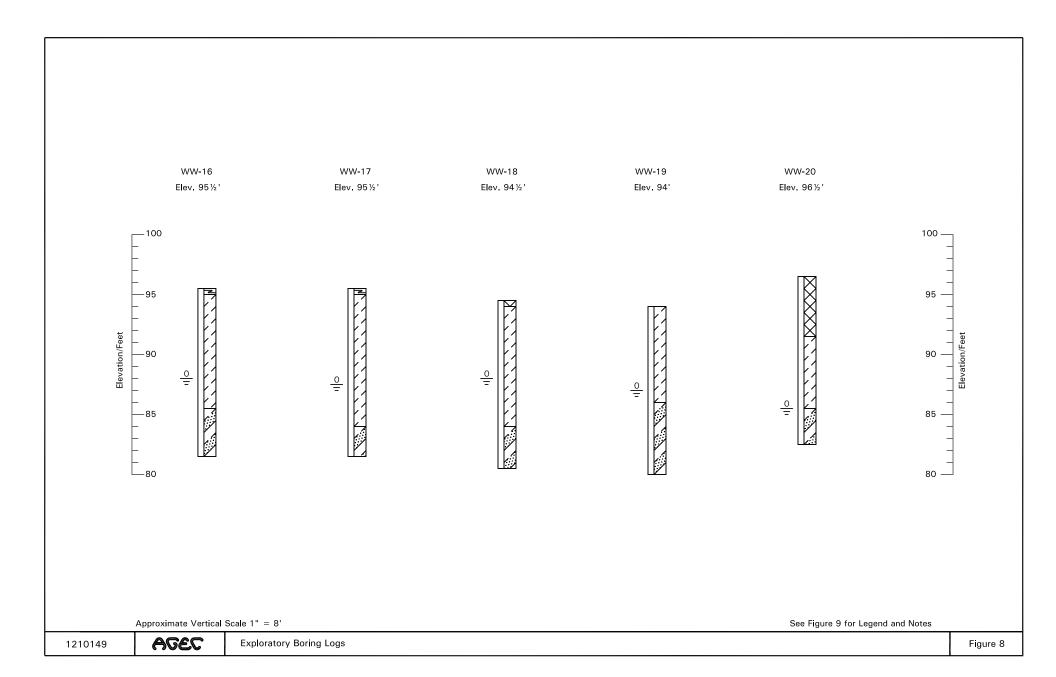
OGDEN, UTAH

Approximate Vertical Scale 1" = 8'

See Figure 9 for Legend and Notes

See Figure 9 for Legend and Notes

Figure 6


Approximate Vertical Scale 1" = 8'

Exploratory Boring Logs

AGEC

1210149

Asphaltic Concrete, dense, dry, black, poor to good condition. Base Course; silty gravel with sand, moist, brown, angular aggregates. Fill; lean clay to sandy lean clay to silty gravel with sand, moist, dark brown to brown to dark gray, petroleum hydrocarbon odor in MW-1 and MW-2. Lean Clay (CL); sandy, stiff to medium stiff, moist, dark brown to brown, slight petroleum hydrocarbon odor in MW-2. Silty Sand (SM); loose to medium dense, moist, light brown. Poorly-graded Sand (SP); slightly gravelly, medium dense, wet, brown. Poorly-graded Sand with Silty Sand (SP/SM); medium dense, moist, brown to gray. Poorly-graded Gravel with Sand (GP); loose to very dense, moist to wet, brown to gray, petroleum hydrocarbon odor in MW-2. Poorly-graded Gravel with Silt and Sand (GP-GM); medium dense, moist to wet, gravish brown. 10/12 California Drive sample taken. The symbol 10/12 indicates that 10 blows from a 140-pound automatic hammer falling 30 inches were required to drive the sampler 12 inches. Indicates continuous soil sample taken. The samples were obtained with disposable acetate liners. Indicates slotted 1½-inch PVC pipe installed in the boring to the depth shown. Indicates solid 1½-inch PVC pipe installed in the boring to the depth shown.

Indicates the depth to free water and number of days after drilling the measurement

NOTES:

- Borings MW-1 to MW-5 were drilled on December 3, 2020 using direct push equipment. Borings MW-6 to MW-10 were drilled on January 20, 2021. Borings MW-11 to MW-15 were drilled on February 8, 2021. Borings MW-16 to MW-20 were drilled on March 4, 2021.
- Locations of the borings were measured approximately by pacing from features shown on the site plan provided.
- 3. Elevations of the borings were measured by automatic/hand level and refer to the benchmark shown on Figure 2.
- The boring locations and elevations should be considered accurate only to the degree implied by the method used.
- 5. The lines between materials shown on the boring logs represent the approximate boundaries between material types and the transitions may be gradual.
- 6. The water level readings shown on the logs were made at the time and under the conditions indicated. Fluctuations in the water level will occur with time.

Exploratory Boring Legend and Notes Figure 9

was taken.

LEGEND:

APPENDIX A ANALYTICAL RESULT TABLES

Soil and Groundwater Analytical Results Forsey's Laundry

Table 1 - Soil Results

Sample	Depth	Date	PID	MEK*	PCE**	TCE***
	(feet)		(ppm)	(mg/kg)	(mg/kg)	(mg/kg)
GP-1	0 to 2	1/20/2020	0.4	0.0306	0.0104	ND
GP-1	7	1/20/2020	5.4	0.031	0.0108	ND
GP-2	0 to 2	1/20/2020	0	0.0275	0.0135	ND
GP-2	7	1/20/2020	1.1	0.0324	ND	ND
MW-1	6 to 8	12/22/2020	0	ND	ND	ND
MW-2	6½ to 8½	12/22/2020	0.1	ND	0.00279	ND
MW-3	6½ to 8½	12/22/2020	0.1	ND	0.018	ND
MW-4	6½ to 8½	12/22/2020	0.2	ND	0.00385	ND
MW-5	6½ to 8½	12/22/2020	0.1	ND	0.00336	ND
MW-6	6 to 7	1/20/2021	0.4	ND	ND	ND
MW-6	10 to 11	1/20/2021	0.5	ND	ND	ND
MW-7	6½ to 8½	1/20/2021	0.6	ND	0.0221	ND
MW-8	6½ to 8½	1/20/2021	0.3	ND	ND	ND
MW-9	6½ to 8½	1/20/2021	0.3	ND	ND	ND
MW-10	6½ to 8½	1/20/2021	0.2	ND	0.0138	ND
MW-11	7 to 8	2/8/2021	0.2	ND	ND	ND
MW-12	9 to 10	2/8/2021	0.2	ND	0.239	0.0028
MW-13	8 to 9	2/8/2021	0.1	ND	ND	ND
MW-14	7 to 8	2/8/2021	0.2	ND	0.0318	ND
MW-15	6 to 7	2/8/2021	0.2	ND	0.103	ND
MW-16	6 to 7	3/4/2021	0.5	ND	ND	ND
MW-17	6½ to 7½	3/4/2021	0.3	ND	0.0202	ND
MW-18	5 to 6	3/4/2021	0.2	ND	ND	ND
MW-19	6 to 7	3/4/2021	0.4	ND	ND	ND
MW-20	8 to 9	3/4/2021	0.2	ND	ND	ND
MW-20	10 to 11	3/4/2021	0.3	ND	ND	ND
November	2020 EPA R	esidential SL		27,000	24	0.94
November	2020 EPA In	dustrial SL		190,000	100	6

ND = Non Detect NA = Not Applicable

^{*} MEK identified as 2-Butadone in lab results

^{**} PCE identified as tetrachloroethene in lab results

^{***} TCE identified as trichloroethene in lab results

Table 2 - Groundwater Results

Sample	Depth	Date	PCE*	TCE**
	(feet)		(mg/L)	(mg/L)
GP-1	7	1/20/2020	0.0422	ND
GP-2	7	1/20/2020	0.00661	ND
MW-1	7.5	12/28/2020	ND	ND
MW-1-Dup	7.5	12/28/2020	ND	ND
MW-2	8.2	12/28/2020	0.0584	ND
MW-3	8.2	12/28/2020	0.739	0.00624
MW-4	8.1	12/28/2020	0.00585	ND
MW-5	7.8	12/28/2020	ND	ND
Trip Blank	NA	12/28/2020	ND	ND
MW-6	8.3	1/20/2021	0.0224	ND
MW-6-Dup	8.3	1/20/2021	0.0213	ND
MW-7	8.2	1/20/2021	0.204	ND
MW-8	8.4	1/20/2021	0.0372	ND
MW-9	8.7	1/20/2021	ND	ND
MW-10	6.4	1/20/2021	0.226	0.0127
Trip Blank	NA	1/20/2021	ND	ND
MW-11	7.8	2/10/2021	0.00729	ND
MW-12	6.2	2/10/2021	0.833	0.026
MW-12-Dup	6.2	2/10/2021	0.771	0.0258
MW-13	7.5	2/10/2021	0.002	ND
MW-14	7.5	2/10/2021	0.0326	ND
MW-15	7	2/10/2021	0.135	0.00619
Trip Blank	NA	2/10/2021	ND	ND
MW-16	5.7	3/10/2021	ND	ND
MW-17	6.8	3/10/2021	0.388	0.0102
MW-17-Dup	6.8	3/10/2021	0.417	0.0114
MW-18	5.6	3/10/2021	ND	ND
MW-19	5.6	3/10/2021	ND	ND
MW-20	8.9	3/10/2021	ND	ND
Trip Blank	NA	3/10/2021	ND	ND
November 202	0 EPA MCL		0.005	0.005

ND = Non Detect NA = Not Applicable

Above MCL

^{*} PCE identified as tetrachloroethene in lab results

^{**} TCE identified as trichloroethene in lab results

Table 3 - Soil Gas Analytical Results Forsey's Laundry

	CAS	Toxicity	PRT-1	PRT-2	VP-1	VP-2	Residential Target Sub-Slab and Near-source Soil Gas Concentration (TCR = 1E-06 or THQ = 0.1) C_{sg} , Target	Commercial Target Sub-Slab and Near-source Soil Gas Concentration (TCR = 1E-06 or THQ = 0.1) C_{sg} , Target
Chemical	Number	Basis	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(μg/m ³)	(µg/m³)
Acetone	67-64-1	NC	122	31.1	81.7	96.7	107,000	451,000
Benzene	71-43-2	CA	3.05	7.19	1.09	1.59	12	52.4
Butadiene, 1,3-	106-99-0	CA	ND	26.8	ND	ND	3.12	13.6
Carbon Disulfide	75-15-0	NC	ND	7.66	ND	ND	2,430	10,200
Carbon Tetrachloride	56-23-5	CA	2.03	ND	ND	ND	15.6	68.1
Chloroform	67-66-3	CA	ND	ND	ND	17	4.07	17.8
Chloromethane	74-87-3	NC	1.31	0.498	0.764	ND	313	1,310
Cyclohexane	110-82-7	NC	ND	ND	ND	0.813	20,900	87,600
Dichloroethene, 1,1-	75-35-4	NC	ND	ND	2.37	ND	695	2,920
Dichloroethene, cis 1,2-	156-59-2		ND	ND	19.6	9.67	NA	NA
Dioxane, 1,4-	123-91-1	CA	ND	ND	ND	6.56	18.7	81.8
Ethanol	64-17-5		50.5	7.52	30.4	27.5	NA	NA
Ethylbenzene	100-41-4	CA	1.08	1.21	1.68	ND	37.4	164
Ethyltoluene, 4-	622-96-8		ND	ND	2.91	ND	NA	NA
Trichlorofluoromethane	75-69-4		1.25	ND	2.24	1.31	NA	NA
Dichlorodifluoromethane	75-71-8	NC	ND	1.94	2.94	2.32	NA	NA
Heptane	142-82-5	NC	1.43	1.43	0.83	2.42	1,390	5,840
Hexane, N-	110-54-3	NC	2.92	4.05	1.23	6.49	2,430	10,200
Isopropylbenzene	98-82-8		ND	ND	2.18	ND	1,390	5,840
Methylene Chloride	75-09-2	CA	2.57	0.847	ND	1.24	2,090	8,760
2-Butanone (MEK)	78-93-3	NC	7.93	11.2	12.3	5.07	17,400	73,000
Naphthalene	91-20-3	CA	ND	ND	5.97	ND	2.75	12
2-Propanol (Isopropanol)	67-63-0	NC	5.92	ND	7.67	15	695	2,920
Propene (Propylene)	115-07-1	NC	ND	164	3.99	ND	10,400	43,800
Styrene	100-42-5	NC	ND	1.66	ND	ND	3,480	14,600
Tetrachloroethylene	127-18-4	CA	25.4	468	37,100	74,000	139	584
Toluene	108-88-3	NC	7.84	6.93	3.06	2.5	17,400	73,000
Trichloroethylene	79-01-6	NC	ND	ND	399	427	6.95	29.2
Trimethylbenzene, 1,2,4-	95-63-6	NC	2.05	1.03	4.49	ND	209	876
Trimethylpentane, 2,2,4-	540-84-1		5.05	ND	ND	ND	NA	NA
Xylene, M & P-	1330-20-7	NC	4.94	2.63	4.22	ND	348	1,460
Xylene, o-	95-47-6	NC	1.78	1.09	1.22	ND	348	1,460

NA = Not Available - No EPA Target ND = Non Detect

Table 4 - Monitoring Well Construction Data Forsey Cleaners

Monitor Well ID	Drilling Method	Total Depth	Date Installed	Diameter/Well Material	Top of Casing Elevation	Screened Interval	Sand Pack	Depth to Water BTOC	GW Elevation RSB
		(BTOC)			(RSB)	(ft)	(ft)	(ft)	(ft)
MW-1	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.61	5 to 15	3 to 15	7.16	92.45
MW-2	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.74	5 to 15	3 to 15	7.88	91.86
MW-3	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.42	5 to 15	3 to 15	7.93	91.49
MW-4	Direct Push	15 feet	12/22/2020	1 1/2- inch/PVC	99.25	5 to 15	3 to 15	7.78	91.47
MW-5	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.14	5 to 15	3 to 15	7.53	91.61
MW-6	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	99.44	5 to 15	3 to 15	8.02	91.42
MW-7	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	98.96	5 to 15	3 to 15	7.86	91.10
MW-8	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	99.18	5 to 15	3 to 15	8.13	91.05
MW-9	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	99.78	5 to 15	3 to 15	8.36	91.42
MW-10	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	96.52	5 to 15	3 to 15	6.04	90.48
MW-11	Direct Push	14 feet	2/8/2021	1 ½- inch/PVC	98.97	4 to 14	3 to 14	7.70	91.27
MW-12	Direct Push	14 feet	2/8/2021	1 ½- inch/PVC	95.11	4 to 14	3 to 14	6.00	89.11
MW-13	Direct Push	14 feet	2/8/2021	1 ½- inch/PVC	96.77	4 to 14	3 to 14	7.44	89.33
MW-14	Direct Push	14 feet	2/8/2021	1 1/2- inch/PVC	96.74	4 to 14	3 to 14	7.50	89.24
MW-15	Direct Push	14 feet	2/8/2021	1 ½- inch/PVC	95.66	4 to 14	3 to 14	9.92	85.74
MW-16	Direct Push	14 feet	3/4/2021	1 ½- inch/PVC	95.34	4 to 14	3 to 14	5.75	89.59
MW-17	Direct Push	14 feet	3/4/2021	1 ½- inch/PVC	95.44	4 to 14	3 to 14	6.85	88.59
MW-18	Direct Push	14 feet	3/4/2021	1 ½- inch/PVC	94.48	4 to 14	3 to 14	5.64	88.84
MW-19	Direct Push	14 feet	3/4/2021	1 ½- inch/PVC	94.22	4 to 14	3 to 14	5.61	88.61
MW-20	Direct Push	14 feet	3/4/2021	1 ½- inch/PVC	96.58	4 to 14	3 to 14	8.91	87.67

Depth to water measured in all 20 wells on 03/10/2021

BTOC = Below Top of Casing

RSB = Relative to Site Benchmark

APPENDIX B AWAL LABORATORY RESULTS

Joe DeGooyer Applied Geotechnical 600 West Sandy Parkway Sandy, UT 84070

TEL: (801) 566-6399

RE: Forsey's Cleaners MW's 16-20 / 1210149

3440 South 700 West Salt Lake City, UT 84119 Dear Joe DeGooyer: Lab Set ID: 2103147

American West Analytical Laboratories received sample(s) on 3/4/2021 for the analyses presented in the following report.

Phone: (801) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Kyle F. Gross Laboratory Director

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jose Rocha QA Officer The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Approved by:

Laboratory Director or designee

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

 Lab Sample ID:
 2103147-001A

 Client Sample ID:
 MW-16 @ 6'-7'

 Collection Date:
 3/4/2021
 935h

 Received Date:
 3/4/2021
 1558h

Analytical Results VOAs AWAL List by GC/MS Method 8260D

Analyzed: 3/5/2021 1842h Extracted:

Units: μg/kg-dry Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.50	< 2.50	#
1,1,2,2-Tetrachloroethane	79-34-5	2.50	< 2.50	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.50	< 2.50	
1,1,2-Trichloroethane	79-00-5	2.50	< 2.50	
1,1-Dichloroethane	75-34-3	2.50	< 2.50	
1,1-Dichloroethene	75-35-4	2.50	< 2.50	
1,2,3-Trichlorobenzene	87-61-6	2.50	< 2.50	
1,2,4-Trichlorobenzene	120-82-1	2.50	< 2.50	
1,2-Dibromo-3-chloropropane	96-12-8	6.24	< 6.24	
1,2-Dibromoethane	106-93-4	2.50	< 2.50	
1,2-Dichlorobenzene	95-50-1	2.50	< 2.50	
1,2-Dichloroethane	107-06-2	2.50	< 2.50	
1,2-Dichloropropane	78-87-5	2.50	< 2.50	
1,3-Dichlorobenzene	541-73-1	2.50	< 2.50	
1,4-Dichlorobenzene	106-46-7	2.50	< 2.50	
1,4-Dioxane	123-91-1	62.4	< 62.4	
2-Butanone	78-93-3	12.5	< 12.5	@\$
2-Hexanone	591-78-6	6.24	< 6.24	
4-Methyl-2-pentanone	108-10-1	6.24	< 6.24	
Acetone	67-64-1	12.5	< 12.5	\$
Benzene	71-43-2	2.50	< 2.50	
Bromochloromethane	74-97-5	2.50	< 2.50	
Bromodichloromethane	75-27-4	2.50	< 2.50	#
Bromoform	75-25-2	2.50	< 2.50	
Bromomethane	74-83-9	6.24	< 6.24	\$
Carbon disulfide	75-15-0	2.50	< 2.50	
Carbon tetrachloride	56-23-5	2.50	< 2.50	#
Chlorobenzene	108-90-7	2.50	< 2.50	
Chloroethane	75-00-3	2.50	< 2.50	\$

Report Date: 3/10/2021 Page 2 of 25

Test Code: 8260D-S

Lab Sample ID: 2103147-001A Client Sample ID: MW-16 @ 6'-7'

Analyzed: 3/5/2021 1842h **Extracted:**

Units: µg/kg-dry **Dilution Factor:** 1 Method: SW8260D

	1887						
American West	Compound				oorting Limit	Analytical Result	Qual
	Chloroform		67	-66-3	2.50	< 2.50	
	Chloromethane		74	-87-3	3.74	< 3.74	
	cis-1,2-Dichloroethene		156	5-59-2	2.50	< 2.50	
	cis-1,3-Dichloropropene		1006	51-01-5	2.50	< 2.50	
3440 South 700 West	Cyclohexane		110)-82-7	2.50	< 2.50	
Salt Lake City, UT 84119	Dibromochloromethane		124	1-48-1	2.50	< 2.50	
	Dichlorodifluoromethane		75	-71-8	2.50	< 2.50	#
	Ethylbenzene)-41-4	2.50	< 2.50	
Phone: (801) 263-8686	1) 263-8686 Isopropylbenzene 98-82-8		-82-8	2.50	< 2.50		
Foll Free: (888) 263-8686	m,p-Xylene	n,p-Xylene			2.50	< 2.50	
Fax: (801) 263-8687	Methyl Acetate	79-20-9		6.24	< 6.24		
-mail: awal@awal-labs.com	Methyl tert-butyl ether		163	4-04-4	2.50	< 2.50	
man. aware awar nasseom	Methylcyclohexane		108	3-87-2	2.50	< 2.50	
veb: www.awal-labs.com	Methylene chloride		75	-09-2	6.24	< 6.24	
	Naphthalene		91	-20-3	2.50	< 2.50	
	o-Xylene		95	-47-6	2.50	< 2.50	
Kyle F. Gross	Styrene		100)-42-5	2.50	< 2.50	
Laboratory Director	Tetrachloroethene		127	7-18-4	2.50	< 2.50	
	Toluene		108	3-88-3	2.50	< 2.50	
Jose Rocha	trans-1,2-Dichloroethene		156	5-60-5	2.50	< 2.50	
QA Officer	trans-1,3-Dichloropropene		1006	61-02-6	2.50	< 2.50	#
	Trichloroethene		79	-01-6	2.50	< 2.50	
	Trichlorofluoromethane		75	-69-4	2.50	< 2.50	#
	Vinyl chloride		75	-01-4	1.25	< 1.25	
	Surrogate Units: µg/kg	g-dry CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dichloroethane-d4	17060-07-0	73.7	62.38	118	70-145	
	Surr: 4-Bromofluorobenzene	460-00-4	53.6	62.38	85.9	70-128	
	Surr: Dibromofluoromethane Surr: Toluene-d8	1868-53-7 2037-26-5	59.6 54.9	62.38 62.38	95.6 88.0	70-133 70-123	
		2037 20 3	2 117	02.50		70 123	

⁽a) - High RPD due to suspected sample non-homogeneity or matrix interference.

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Contact: Joe DeGooyer Applied Geotechnical

Project: Forsey's Cleaners MW's 16-20 / 1210149

2103147-002A Lab Sample ID: Client Sample ID: MW-17 @ 6.5'-7.5' **Collection Date:** 3/4/2021 1020h **Received Date:** 3/4/2021 1558h

Analytical Results

VOAs AWAL List by GC/MS Method 8260D

Analyzed: 3/5/2021 1944h **Extracted:**

SW8260D **Units:** μg/kg-dry **Dilution Factor:** 1 Method:

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

> Jose Rocha **QA** Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.50	< 2.50	#
1,1,2,2-Tetrachloroethane	79-34-5	2.50	< 2.50	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.50	< 2.50	
1,1,2-Trichloroethane	79-00-5	2.50	< 2.50	
1,1-Dichloroethane	75-34-3	2.50	< 2.50	
1,1-Dichloroethene	75-35-4	2.50	< 2.50	
1,2,3-Trichlorobenzene	87-61-6	2.50	< 2.50	
1,2,4-Trichlorobenzene	120-82-1	2.50	< 2.50	
1,2-Dibromo-3-chloropropane	96-12-8	6.26	< 6.26	
1,2-Dibromoethane	106-93-4	2.50	< 2.50	
1,2-Dichlorobenzene	95-50-1	2.50	< 2.50	
1,2-Dichloroethane	107-06-2	2.50	< 2.50	
1,2-Dichloropropane	78-87-5	2.50	< 2.50	
1,3-Dichlorobenzene	541-73-1	2.50	< 2.50	
1,4-Dichlorobenzene	106-46-7	2.50	< 2.50	
1,4-Dioxane	123-91-1	62.6	< 62.6	
2-Butanone	78-93-3	12.5	< 12.5	\$
2-Hexanone	591-78-6	6.26	< 6.26	
4-Methyl-2-pentanone	108-10-1	6.26	< 6.26	
Acetone	67-64-1	12.5	< 12.5	\$
Benzene	71-43-2	2.50	< 2.50	
Bromochloromethane	74-97-5	2.50	< 2.50	
Bromodichloromethane	75-27-4	2.50	< 2.50	#
Bromoform	75-25-2	2.50	< 2.50	
Bromomethane	74-83-9	6.26	< 6.26	\$
Carbon disulfide	75-15-0	2.50	< 2.50	
Carbon tetrachloride	56-23-5	2.50	< 2.50	#
Chlorobenzene	108-90-7	2.50	< 2.50	
Chloroethane	75-00-3	2.50	< 2.50	\$

Report Date: 3/10/2021 Page 4 of 25

Test Code: 8260D-S

Lab Sample ID: 2103147-002A Client Sample ID: MW-17 @ 6.5'-7.5'

Analyzed: 3/5/2021 1944h **Extracted:**

Units: µg/kg-dry **Dilution Factor:** 1 Method: SW8260D

emis. µg/kg diy		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,10thou. 51,0200B			
Compound					Analytical Result	Qual	
Chloroform		67	-66-3	2.50	< 2.50		
Chloromethane		74	-87-3	3.76	< 3.76		
cis-1,2-Dichloroethene		156	5-59-2	2.50	< 2.50		
cis-1,3-Dichloropropene		1006	51-01-5	2.50	< 2.50		
Cyclohexane		110)-82-7	2.50	< 2.50		
Dibromochloromethane		124	1-48-1	2.50	< 2.50		
Dichlorodifluoromethane		75	-71-8	2.50	< 2.50	#	
Ethylbenzene		100)-41-4	2.50	< 2.50		
Isopropylbenzene		98	-82-8	2.50	< 2.50		
m,p-Xylene	n,p-Xylene			2.50	< 2.50		
Methyl Acetate	79	-20-9	6.26	< 6.26			
Methyl tert-butyl ether		163	4-04-4	2.50	< 2.50		
Methylcyclohexane		108	3-87-2	2.50	< 2.50		
Methylene chloride		75	-09-2	6.26	< 6.26		
Naphthalene		91	-20-3	2.50	< 2.50		
o-Xylene		95	-47-6	2.50	< 2.50		
Styrene		100)-42-5	2.50	< 2.50		
Tetrachloroethene		127	7-18-4	2.50	20.2		
Toluene							
trans-1,2-Dichloroethene		156					
	e					#	
Trichloroethene		79					
Trichlorofluoromethane		75	-69-4	2.50	< 2.50	#	
Vinyl chloride		75	-01-4	1.25	< 1.25		
Surrogate Units: μg/	/kg-dry CAS	Result	Amount Spiked	% REC	Limits	Qual	
Surr: 1,2-Dichloroethane-d4	17060-07-0	71.9	62.59	115	70-145		
Surr: 4-Bromofluorobenzene	460-00-4	54.7	62.59	87.4	70-128		
	1868-53-7 2037-26-5			95.1 90.7	70-133 70-123		
	Compound Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m,p-Xylene Methyl Acetate Methyl tert-butyl ether Methylcyclohexane Methylene chloride Naphthalene o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichlorofluoromethane Vinyl chloride Surrogate Units: µg Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	Compound Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m,p-Xylene Methyl Acetate Methyl tert-butyl ether Methylcyclohexane Methylene chloride Naphthalene o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloropropene Trichloroethene Trichlorofluoromethane Vinyl chloride Surrogate Units: µg/kg-dry CAS Surr: 1,2-Dichloroethane-d4 Surr: 1-2-Dichloropropene A60-00-4 Surr: 4-Bromofluoromethane Vinyl chloride	Compound Number Chloroform 67 Chloromethane 74 cis-1,2-Dichloroethene 156 cis-1,3-Dichloropropene 1000 Cyclohexane 116 Dibromochloromethane 122 Dichlorodifluoromethane 75 Ethylbenzene 100 Isopropylbenzene 98 m,p-Xylene 1796 Methyl Acetate 79 Methylcyclohexane 108 Methylene chloride 75 Naphthalene 91 o-Xylene 95 Styrene 100 Tetrachloroethene 122 Toluene 100 trans-1,2-Dichloroethene 150 trans-1,3-Dichloropropene 1000 Trichlorofluoromethane 75 Vinyl chloride 75 Surrogate Units: μg/kg-dry CAS Result Surrogate Units: μg/kg-dry CAS Result Surrogate Units: μg/kg-dry CAS Result </td <td>Compound CAS Number Rep Number Rep Number Chloroform 67-66-3 1 Chloromethane 74-87-3 1 cis-1,2-Dichloroethene 156-59-2 1 cis-1,3-Dichloropropene 10061-01-5 1 Cyclohexane 110-82-7 1 Dibromochloromethane 124-48-1 1 Dichlorodifluoromethane 75-71-8 1 Ethylbenzene 100-41-4 1 Isopropylbenzene 98-82-8 1 m,p-Xylene 179601-23-1 1 Methyl Acetate 79-20-9 1 Methyl Letr-butyl ether 1634-04-4 1 Methylene chloride 75-09-2 1 Naphthalene 91-20-3 1 o-Xylene 95-47-6 1 Styrene 100-42-5 1 Tetrachloroethene 127-18-4 1 Toluene 10061-02-6 1 trans-1,3-Dichloropropene 10061-02-6 1 Trichloroethene 75-69-4<td>Compound CAS Number Reporting Limit Chloroform 67-66-3 2.50 Chloromethane 74-87-3 3.76 cis-1,2-Dichloroethene 156-59-2 2.50 cis-1,3-Dichloropropene 10061-01-5 2.50 Cyclohexane 110-82-7 2.50 Dibromochloromethane 124-48-1 2.50 Dichlorodifluoromethane 75-71-8 2.50 Ethylbenzene 100-41-4 2.50 Isopropylbenzene 98-82-8 2.50 Isopropylbenzene 179601-23-1 2.50 Methyl Acetate 79-20-9 6.26 Methyl tert-butyl ether 1634-04-4 2.50 Methylcyclohexane 108-87-2 2.50 Methylene chloride 75-09-2 6.26 Naphthalene 91-20-3 2.50 o-Xylene 95-47-6 2.50 Styrene 100-42-5 2.50 Tetrachloroethene 127-18-4 2.50 trans-1,2-Dichloroethene 156-60-5 2.50 <t< td=""><td>Compound CAS Number Reporting Limit Analytical Result Chloroform 67-66-3 2.50 < 2.50</td> Chloromethane 74-87-3 3.76 < 3.76</t<></td> cis-1,2-Dichloroethene 156-59-2 2.50 < 2.50</td> cis-1,3-Dichloropropene 10061-01-5 2.50 < 2.50	Compound CAS Number Rep Number Rep Number Chloroform 67-66-3 1 Chloromethane 74-87-3 1 cis-1,2-Dichloroethene 156-59-2 1 cis-1,3-Dichloropropene 10061-01-5 1 Cyclohexane 110-82-7 1 Dibromochloromethane 124-48-1 1 Dichlorodifluoromethane 75-71-8 1 Ethylbenzene 100-41-4 1 Isopropylbenzene 98-82-8 1 m,p-Xylene 179601-23-1 1 Methyl Acetate 79-20-9 1 Methyl Letr-butyl ether 1634-04-4 1 Methylene chloride 75-09-2 1 Naphthalene 91-20-3 1 o-Xylene 95-47-6 1 Styrene 100-42-5 1 Tetrachloroethene 127-18-4 1 Toluene 10061-02-6 1 trans-1,3-Dichloropropene 10061-02-6 1 Trichloroethene 75-69-4 <td>Compound CAS Number Reporting Limit Chloroform 67-66-3 2.50 Chloromethane 74-87-3 3.76 cis-1,2-Dichloroethene 156-59-2 2.50 cis-1,3-Dichloropropene 10061-01-5 2.50 Cyclohexane 110-82-7 2.50 Dibromochloromethane 124-48-1 2.50 Dichlorodifluoromethane 75-71-8 2.50 Ethylbenzene 100-41-4 2.50 Isopropylbenzene 98-82-8 2.50 Isopropylbenzene 179601-23-1 2.50 Methyl Acetate 79-20-9 6.26 Methyl tert-butyl ether 1634-04-4 2.50 Methylcyclohexane 108-87-2 2.50 Methylene chloride 75-09-2 6.26 Naphthalene 91-20-3 2.50 o-Xylene 95-47-6 2.50 Styrene 100-42-5 2.50 Tetrachloroethene 127-18-4 2.50 trans-1,2-Dichloroethene 156-60-5 2.50 <t< td=""><td>Compound CAS Number Reporting Limit Analytical Result Chloroform 67-66-3 2.50 < 2.50</td> Chloromethane 74-87-3 3.76 < 3.76</t<></td> cis-1,2-Dichloroethene 156-59-2 2.50 < 2.50	Compound CAS Number Reporting Limit Chloroform 67-66-3 2.50 Chloromethane 74-87-3 3.76 cis-1,2-Dichloroethene 156-59-2 2.50 cis-1,3-Dichloropropene 10061-01-5 2.50 Cyclohexane 110-82-7 2.50 Dibromochloromethane 124-48-1 2.50 Dichlorodifluoromethane 75-71-8 2.50 Ethylbenzene 100-41-4 2.50 Isopropylbenzene 98-82-8 2.50 Isopropylbenzene 179601-23-1 2.50 Methyl Acetate 79-20-9 6.26 Methyl tert-butyl ether 1634-04-4 2.50 Methylcyclohexane 108-87-2 2.50 Methylene chloride 75-09-2 6.26 Naphthalene 91-20-3 2.50 o-Xylene 95-47-6 2.50 Styrene 100-42-5 2.50 Tetrachloroethene 127-18-4 2.50 trans-1,2-Dichloroethene 156-60-5 2.50 <t< td=""><td>Compound CAS Number Reporting Limit Analytical Result Chloroform 67-66-3 2.50 < 2.50</td> Chloromethane 74-87-3 3.76 < 3.76</t<>	Compound CAS Number Reporting Limit Analytical Result Chloroform 67-66-3 2.50 < 2.50	

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Contact: Joe DeGooyer Applied Geotechnical

Project: Forsey's Cleaners MW's 16-20 / 1210149

Lab Sample ID: 2103147-003A Client Sample ID: MW-18 @ 5'-6' **Collection Date:** 3/4/2021 1055h **Received Date:** 3/4/2021 1558h

Analytical Results

VOAs AWAL List by GC/MS Method 8260D

Analyzed: 3/5/2021 2004h **Extracted:**

SW8260D **Units:** μg/kg-dry **Dilution Factor:** 1.01 Method:

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com web: www.awal-labs.com

> Kyle F. Gross **Laboratory Director**

> > Jose Rocha **QA** Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.52	< 2.52	#
1,1,2,2-Tetrachloroethane	79-34-5	2.52	< 2.52	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.52	< 2.52	
1,1,2-Trichloroethane	79-00-5	2.52	< 2.52	
1,1-Dichloroethane	75-34-3	2.52	< 2.52	
1,1-Dichloroethene	75-35-4	2.52	< 2.52	
1,2,3-Trichlorobenzene	87-61-6	2.52	< 2.52	
1,2,4-Trichlorobenzene	120-82-1	2.52	< 2.52	
1,2-Dibromo-3-chloropropane	96-12-8	6.29	< 6.29	
1,2-Dibromoethane	106-93-4	2.52	< 2.52	
1,2-Dichlorobenzene	95-50-1	2.52	< 2.52	
1,2-Dichloroethane	107-06-2	2.52	< 2.52	
1,2-Dichloropropane	78-87-5	2.52	< 2.52	
1,3-Dichlorobenzene	541-73-1	2.52	< 2.52	
1,4-Dichlorobenzene	106-46-7	2.52	< 2.52	
1,4-Dioxane	123-91-1	62.9	< 62.9	
2-Butanone	78-93-3	12.6	< 12.6	\$
2-Hexanone	591-78-6	6.29	< 6.29	
4-Methyl-2-pentanone	108-10-1	6.29	< 6.29	
Acetone	67-64-1	12.6	< 12.6	\$
Benzene	71-43-2	2.52	< 2.52	
Bromochloromethane	74-97-5	2.52	< 2.52	
Bromodichloromethane	75-27-4	2.52	< 2.52	#
Bromoform	75-25-2	2.52	< 2.52	
Bromomethane	74-83-9	6.29	< 6.29	\$
Carbon disulfide	75-15-0	2.52	< 2.52	
Carbon tetrachloride	56-23-5	2.52	< 2.52	#
Chlorobenzene	108-90-7	2.52	< 2.52	
Chloroethane	75-00-3	2.52	< 2.52	\$

Report Date: 3/10/2021 Page 6 of 25

Test Code: 8260D-S

Lab Sample ID: 2103147-003A Client Sample ID: MW-18 @ 5'-6'

Analyzed: 3/5/2021 2004h **Extracted:**

Units: µg/kg-dry **Dilution Factor:** 1.01 Method: SW8260D

	emes: μg/kg dry	Diation I ac	Distriction 1 sectors 1.01		1/10thou. 5 // 0200B		
American West	Compound				oorting Limit	Analytical Result	Qual
	Chloroform		67	-66-3	2.52	< 2.52	
	Chloromethane		74	-87-3	3.77	< 3.77	
	cis-1,2-Dichloroethene		156	5-59-2	2.52	< 2.52	
	cis-1,3-Dichloropropene		1006	51-01-5	2.52	< 2.52	
3440 South 700 West	Cyclohexane		110)-82-7	2.52	< 2.52	
Salt Lake City, UT 84119	Dibromochloromethane		124	1-48-1	2.52	< 2.52	
	Dichlorodifluoromethane	;	75	-71-8	2.52	< 2.52	#
	Ethylbenzene)-41-4	2.52	< 2.52	
Phone: (801) 263-8686	Isopropylbenzene		98	-82-8	2.52	< 2.52	
Toll Free: (888) 263-8686	m,p-Xylene	1796	01-23-1	2.52	< 2.52		
Fax: (801) 263-8687	Methyl Acetate	79-20-9		6.29	< 6.29		
e-mail: awal@awal-labs.com	Methyl tert-butyl ether	163	4-04-4	2.52	< 2.52		
	Methylcyclohexane			3-87-2	2.52	< 2.52	
web: www.awal-labs.com	Methylene chloride		75	-09-2	6.29	< 6.29	
	Naphthalene		91	-20-3	2.52	< 2.52	
	o-Xylene		95	-47-6	2.52	< 2.52	
Kyle F. Gross	Styrene		100)-42-5	2.52	< 2.52	2.52
Laboratory Director	Tetrachloroethene		127-18-4		2.52	< 2.52	
	Toluene		108	3-88-3	2.52	< 2.52	
Jose Rocha	trans-1,2-Dichloroethene		156	5-60-5	2.52	< 2.52	
QA Officer	trans-1,3-Dichloropropen	ne	1006	51-02-6	2.52	< 2.52	#
	Trichloroethene		79	-01-6	2.52	< 2.52	
	Trichlorofluoromethane		75	-69-4	2.52	< 2.52	#
	Vinyl chloride		75	-01-4	1.26	< 1.26	
	Surrogate Units: μg	y/kg-dry CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dichloroethane-d4	17060-07-0	74.7	62.88	119	70-145	
	Surr: 4-Bromofluorobenzene		54.8	62.88	87.1	70-128	
	Surr: Dibromofluoromethane Surr: Toluene-d8	1868-53-7 2037-26-5	60.8 56.2	62.88 62.88	96.7 89.3	70-133 70-123	

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

 Lab Sample ID:
 2103147-004A

 Client Sample ID:
 MW-19 @ 6'-7'

 Collection Date:
 3/4/2021
 1130h

 Received Date:
 3/4/2021
 1558h

Analytical Results VOAs AWAL List by GC/MS Method 8260D

Analyzed: 3/5/2021 2024h Extracted:

Units: μg/kg-dry Dilution Factor: 0.99 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.52	< 2.52	#
1,1,2,2-Tetrachloroethane	79-34-5	2.52	< 2.52	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.52	< 2.52	
1,1,2-Trichloroethane	79-00-5	2.52	< 2.52	
1,1-Dichloroethane	75-34-3	2.52	< 2.52	
1,1-Dichloroethene	75-35-4	2.52	< 2.52	
1,2,3-Trichlorobenzene	87-61-6	2.52	< 2.52	
1,2,4-Trichlorobenzene	120-82-1	2.52	< 2.52	
1,2-Dibromo-3-chloropropane	96-12-8	6.30	< 6.30	
1,2-Dibromoethane	106-93-4	2.52	< 2.52	
1,2-Dichlorobenzene	95-50-1	2.52	< 2.52	
1,2-Dichloroethane	107-06-2	2.52	< 2.52	
1,2-Dichloropropane	78-87-5	2.52	< 2.52	
1,3-Dichlorobenzene	541-73-1	2.52	< 2.52	
1,4-Dichlorobenzene	106-46-7	2.52	< 2.52	
1,4-Dioxane	123-91-1	63.0	< 63.0	
2-Butanone	78-93-3	12.6	< 12.6	\$
2-Hexanone	591-78-6	6.30	< 6.30	
4-Methyl-2-pentanone	108-10-1	6.30	< 6.30	
Acetone	67-64-1	12.6	< 12.6	\$
Benzene	71-43-2	2.52	< 2.52	
Bromochloromethane	74-97-5	2.52	< 2.52	
Bromodichloromethane	75-27-4	2.52	< 2.52	#
Bromoform	75-25-2	2.52	< 2.52	
Bromomethane	74-83-9	6.30	< 6.30	\$
Carbon disulfide	75-15-0	2.52	< 2.52	
Carbon tetrachloride	56-23-5	2.52	< 2.52	#
Chlorobenzene	108-90-7	2.52	< 2.52	
Chloroethane	75-00-3	2.52	< 2.52	\$

Report Date: 3/10/2021 Page 8 of 25

Test Code: 8260D-S

Lab Sample ID: 2103147-004A **Client Sample ID:** MW-19 @ 6'-7'

Analyzed: 3/5/2021 2024h Extracted:

Units: μg/kg-dry Dilution Factor: 0.99 Method: SW8260D

	- μg/kg dry		District Tuct			111cmou. 5 11 02 00 B		
American West	Compound					porting Limit	Analytical Result	Qual
	Chloroform			67	-66-3	2.52	< 2.52	
	Chlorometha	ne		74	-87-3	3.78	< 3.78	
	cis-1,2-Dichle	oroethene		156	5-59-2	2.52	< 2.52	
	cis-1,3-Dichle	oropropene		1006	51-01-5	2.52	< 2.52	
3440 South 700 West	Cyclohexane			110)-82-7	2.52	< 2.52	
Salt Lake City, UT 84119	Dibromochlo	romethane		124	1-48-1	2.52	< 2.52	
	Dichlorodiflu	oromethane		75	-71-8	2.52	< 2.52	#
	Ethylbenzene			100)-41-4	2.52	< 2.52	
Phone: (801) 263-8686	Isopropylben	zene		98-82-8		2.52	< 2.52	
Toll Free: (888) 263-8686	m,p-Xylene		179601-23-1		2.52	< 2.52		
Fax: (801) 263-8687	Methyl Acetate			79-20-9		6.30	< 6.30	
e-mail: awal@awal-labs.com	Methyl tert-butyl ether			163	4-04-4	2.52	< 2.52	
	Methylcyclol	Methylcyclohexane			3-87-2	2.52	< 2.52	
web: www.awal-labs.com	Methylene ch	lloride		75	-09-2	6.30	< 6.30	
	Naphthalene			91-20-3 95-47-6 100-42-5		2.52	< 2.52	
	o-Xylene					2.52	< 2.52	
Kyle F. Gross	Styrene					2.52	< 2.52	
Laboratory Director	Tetrachloroet	thene		127	7-18-4	2.52	< 2.52	
	Toluene			108	3-88-3	2.52	< 2.52	
Jose Rocha	trans-1,2-Dic	hloroethene		156	6-60-5	2.52	< 2.52	
QA Officer	trans-1,3-Dic	hloropropene		1006	61-02-6	2.52	< 2.52	#
	Trichloroethe	ene		79	-01-6	2.52	< 2.52	
	Trichlorofluo	romethane		75	-69-4	2.52	< 2.52	#
	Vinyl chlorid	e		75	-01-4	1.26	< 1.26	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
	*	nloroethane-d4	17060-07-0	77.8	63.03	123	70-145	
		ofluorobenzene ofluoromethane	460-00-4	57.0	63.03	90.5	70-128	
	Surr: Dibromo		1868-53-7 2037-26-5	63.4 57.0	63.03 63.03	101 90.4	70-133 70-123	

 $Sampling\ and\ analytical\ preparation\ performed\ by\ method\ 5030A\ modified\ for\ analysis\ of\ soil\ samples\ collected\ in\ 2\ or\ 4\ oz\ jars.$

^{#-} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

 Lab Sample ID:
 2103147-005A

 Client Sample ID:
 MW-20 @ 8'-9'

 Collection Date:
 3/4/2021
 1215h

 Received Date:
 3/4/2021
 1558h

Analytical Results VOAs AWAL List by GC/MS Method 8260D

Analyzed: 3/5/2021 2045h Extracted:

Units: μg/kg-dry Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com web: www.awal-labs.com

> Kyle F. Gross Laboratory Director

> > Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.47	< 2.47	#
1,1,2,2-Tetrachloroethane	79-34-5	2.47	< 2.47	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.47	< 2.47	
1,1,2-Trichloroethane	79-00-5	2.47	< 2.47	
1,1-Dichloroethane	75-34-3	2.47	< 2.47	
1,1-Dichloroethene	75-35-4	2.47	< 2.47	
1,2,3-Trichlorobenzene	87-61-6	2.47	< 2.47	
1,2,4-Trichlorobenzene	120-82-1	2.47	< 2.47	
1,2-Dibromo-3-chloropropane	96-12-8	6.17	< 6.17	
1,2-Dibromoethane	106-93-4	2.47	< 2.47	
1,2-Dichlorobenzene	95-50-1	2.47	< 2.47	
1,2-Dichloroethane	107-06-2	2.47	< 2.47	
1,2-Dichloropropane	78-87-5	2.47	< 2.47	
1,3-Dichlorobenzene	541-73-1	2.47	< 2.47	
1,4-Dichlorobenzene	106-46-7	2.47	< 2.47	
1,4-Dioxane	123-91-1	61.7	< 61.7	
2-Butanone	78-93-3	12.3	< 12.3	\$
2-Hexanone	591-78-6	6.17	< 6.17	
4-Methyl-2-pentanone	108-10-1	6.17	< 6.17	
Acetone	67-64-1	12.3	< 12.3	\$
Benzene	71-43-2	2.47	< 2.47	
Bromochloromethane	74-97-5	2.47	< 2.47	
Bromodichloromethane	75-27-4	2.47	< 2.47	#
Bromoform	75-25-2	2.47	< 2.47	
Bromomethane	74-83-9	6.17	< 6.17	\$
Carbon disulfide	75-15-0	2.47	< 2.47	
Carbon tetrachloride	56-23-5	2.47	< 2.47	#
Chlorobenzene	108-90-7	2.47	< 2.47	
Chloroethane	75-00-3	2.47	< 2.47	\$

Report Date: 3/10/2021 Page 10 of 25

Test Code: 8260D-S

Lab Sample ID: 2103147-005A **Client Sample ID:** MW-20 @ 8'-9'

Analyzed: 3/5/2021 2045h Extracted:

Units: μg/kg-dry Dilution Factor: 1 Method: SW8260D

	Units: µg/k	g-ary	Dilution Fact	or: 1		Metnoa:	SW8260D	
American West	Compound					porting Limit	Analytical Result	Qual
	Chloroform			67	-66-3	2.47	< 2.47	
	Chloromethar	ne		74	-87-3	3.70	< 3.70	
	cis-1,2-Dichlo	oroethene		156	5-59-2	2.47	< 2.47	
	cis-1,3-Dichlo	oropropene		1006	51-01-5	2.47	< 2.47	
3440 South 700 West	Cyclohexane			110)-82-7	2.47	< 2.47	
Salt Lake City, UT 84119	Dibromochlo	romethane		124	1-48-1	2.47	< 2.47	
	Dichlorodiflu	oromethane		75	-71-8	2.47	< 2.47	#
	Ethylbenzene			100)-41-4	2.47	< 2.47	
Phone: (801) 263-8686	Isopropylbenz	zene		98	-82-8	2.47	< 2.47	
Toll Free: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.47	< 2.47	
Fax: (801) 263-8687	Methyl Aceta	te		79	-20-9	6.17	< 6.17	
e-mail: awal@awal-labs.com	Methyl tert-bi	utyl ether		163	4-04-4	2.47	< 2.47	
	Methylcycloh	exane		108	3-87-2	2.47	< 2.47	
web: www.awal-labs.com	Methylene ch	loride		75	-09-2	6.17	< 6.17	
	Naphthalene			91	-20-3	2.47	< 2.47	
	o-Xylene			95	-47-6	2.47	< 2.47	
Kyle F. Gross	Styrene			100)-42-5	2.47	< 2.47	
Laboratory Director	Tetrachloroet	hene		127	7-18-4	2.47	< 2.47	
	Toluene			108	3-88-3	2.47	< 2.47	
Jose Rocha	trans-1,2-Dicl	nloroethene		156	5-60-5	2.47	< 2.47	
QA Officer	trans-1,3-Dicl	nloropropene		1006	61-02-6	2.47	< 2.47	#
	Trichloroethe	ne		79	-01-6	2.47	< 2.47	
	Trichlorofluo	romethane		75	-69-4	2.47	< 2.47	#
	Vinyl chloride	e		75	-01-4	1.23	< 1.23	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dich		17060-07-0	78.8	61.68	128	70-145	
	Surr: 4-Bromo		460-00-4	53.6	61.68	86.9	70-128	
	Surr: Dibromo Surr: Toluene-	fluoromethane d8	1868-53-7 2037-26-5	61.3 55.3	61.68 61.68	99.4 89.6	70-133 70-123	

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars. # - This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

Client: Applied Geotechnical Contact: Joe DeGooyer

Forsey's Cleaners MW's 16-20 / 1210149 **Project:**

Lab Sample ID: 2103147-006A Client Sample ID: MW-20 @ 10'-11' **Collection Date:** 3/4/2021 1220h **Received Date:** 3/4/2021 1558h

VOAs AWAL List by GC/MS Method 8260D **Analytical Results**

Analyzed: 3/5/2021 2105h **Extracted:**

Units: µg/kg-dry **Dilution Factor:** 0.97 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Number Limit Compound Result < 2.41 1,1,1-Trichloroethane 71-55-6 2.41 1,1,2,2-Tetrachloroethane 79-34-5 2.41 < 2.41 Phone: (801) 263-8686 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 2.41 < 2.41 Toll Free: (888) 263-8686 1,1,2-Trichloroethane 79-00-5 2.41 < 2.41 Fax: (801) 263-8687 e-mail: awal@awal-labs.com web: www.awal-labs.com Kyle F. Gross **Laboratory Director** Jose Rocha **QA** Officer

1,1-Dichloroethane	75-34-3	2.41	< 2.41		
1,1-Dichloroethene	75-35-4	2.41	< 2.41		
1,2,3-Trichlorobenzene	87-61-6	2.41	< 2.41		
1,2,4-Trichlorobenzene	120-82-1	2.41	< 2.41		
1,2-Dibromo-3-chloropropane	96-12-8	6.04	< 6.04		
1,2-Dibromoethane	106-93-4	2.41	< 2.41		
1,2-Dichlorobenzene	95-50-1	2.41	< 2.41		
1,2-Dichloroethane	107-06-2	2.41	< 2.41		
1,2-Dichloropropane	78-87-5	2.41	< 2.41		
1,3-Dichlorobenzene	541-73-1	2.41	< 2.41		
1,4-Dichlorobenzene	106-46-7	2.41	< 2.41		
1,4-Dioxane	123-91-1	60.4	< 60.4		
2-Butanone	78-93-3	12.1	< 12.1	\$	
2-Hexanone	591-78-6	6.04	< 6.04		
4-Methyl-2-pentanone	108-10-1	6.04	< 6.04		
Acetone	67-64-1	12.1	< 12.1	\$	
Benzene	71-43-2	2.41	< 2.41		
Bromochloromethane	74-97-5	2.41	< 2.41		
Bromodichloromethane	75-27-4	2.41	< 2.41	#	
Bromoform	75-25-2	2.41	< 2.41		
Bromomethane	74-83-9	6.04	< 6.04	\$	
Carbon disulfide	75-15-0	2.41	< 2.41		
Carbon tetrachloride	56-23-5	2.41	< 2.41	#	
Chlorobenzene	108-90-7	2.41	< 2.41		
Chloroethane	75-00-3	2.41	< 2.41	\$	

Test Code: 8260D-S

Qual

Lab Sample ID: 2103147-006A **Client Sample ID:** MW-20 @ 10'-11'

Analyzed: 3/5/2021 2105h Extracted:

Units: μg/kg-dry Dilution Factor: 0.97 Method: SW8260D

	1887						
American West	Compound				porting Limit	Analytical Result	Qual
	Chloroform		67	-66-3	2.41	< 2.41	
	Chloromethane		74	-87-3	3.62	< 3.62	
	cis-1,2-Dichloroethene		150	5-59-2	2.41	< 2.41	
	cis-1,3-Dichloropropene		1000	61-01-5	2.41	< 2.41	
3440 South 700 West	Cyclohexane		110)-82-7	2.41	< 2.41	
Salt Lake City, UT 84119	Dibromochloromethane		124	1-48-1	2.41	< 2.41	
	Dichlorodifluoromethane		75	-71-8	2.41	< 2.41	#
	Ethylbenzene		100)-41-4	2.41	< 2.41	
Phone: (801) 263-8686	Isopropylbenzene		98	-82-8	2.41	< 2.41	
Toll Free: (888) 263-8686	m,p-Xylene		1796	01-23-1	2.41	< 2.41	
Fax: (801) 263-8687	Methyl Acetate		79	-20-9	6.04	< 6.04	
e-mail: awal@awal-labs.com	Methyl tert-butyl ether		163	4-04-4	2.41	< 2.41	
	Methylcyclohexane		108	3-87-2	2.41	< 2.41	
web: www.awal-labs.com	Methylene chloride		75	-09-2	6.04	< 6.04	
	Naphthalene		91	-20-3	2.41	< 2.41	
	o-Xylene		95	-47-6	2.41	< 2.41	
Kyle F. Gross	Styrene		100)-42-5	2.41	< 2.41	
Laboratory Director	Tetrachloroethene		127	7-18-4	2.41	< 2.41	
	Toluene		108	3-88-3	2.41	< 2.41	
Jose Rocha	trans-1,2-Dichloroethene		150	5-60-5	2.41	< 2.41	
QA Officer	trans-1,3-Dichloropropene		1000	61-02-6	2.41	< 2.41	#
	Trichloroethene		79	-01-6	2.41	< 2.41	
	Trichlorofluoromethane		75	-69-4	2.41	< 2.41	#
	Vinyl chloride		75	-01-4	1.21	< 1.21	
	Surrogate Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dichloroethane-d4	17060-07-0	76.0	60.33	126	70-145	
	Surr: 4-Bromofluorobenzene	460-00-4	53.4	60.33	88.6	70-128	
	Surr: Dibromofluoromethane Surr: Toluene-d8	1868-53-7 2037-26-5	58.8 54.1	60.33 60.33	97.5 89.7	70-133 70-123	

 $Sampling\ and\ analytical\ preparation\ performed\ by\ method\ 5030A\ modified\ for\ analysis\ of\ soil\ samples\ collected\ in\ 2\ or\ 4\ oz\ jars.$

^{#-} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Contact: Joe DeGooyer

> **MSVOA** CS

Project: Forsey's Cleaners MW's 16-20 / 1210149 QC Type: LC	Lab Set ID	: 2103147	Dept:	MS
	Project:	Forsey's Cleaners MW's 16-20 / 1210149	QC Type:	LC

Applied Geotechnical

Client:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-3 030521BTest Code:8260D-S	Date Analyzed:	03/05/202	21 1802h										
1,1,1-Trichloroethane	23.4	μg/kg	SW8260D	0.231	2.00	20.00	0	117	64 - 137				
1,1,2,2-Tetrachloroethane	19.6	μg/kg	SW8260D	0.312	2.00	20.00	0	98.0	74 - 150				
1,1,2-Trichloro-1,2,2-trifluoroethane	23.8	μg/kg	SW8260D	0.934	2.00	20.00	0	119	37 - 170				
1,1,2-Trichloroethane	19.3	μg/kg	SW8260D	0.178	2.00	20.00	0	96.6	80 - 117				
1,1-Dichloroethane	19.4	μg/kg	SW8260D	0.131	2.00	20.00	0	96.8	70 - 175				
1,1-Dichloroethene	20.0	μg/kg	SW8260D	0.612	2.00	20.00	0	100	42 - 210				
1,2,3-Trichlorobenzene	17.0	μg/kg	SW8260D	1.03	2.00	20.00	0	85.0	36 - 135				
1,2,4-Trichlorobenzene	16.5	μg/kg	SW8260D	1.18	2.00	20.00	0	82.3	21 - 140				
1,2-Dibromo-3-chloropropane	15.7	μg/kg	SW8260D	0.666	5.00	20.00	0	78.6	62 - 132				
1,2-Dibromoethane	18.7	μg/kg	SW8260D	0.260	2.00	20.00	0	93.5	76 - 125				
1,2-Dichlorobenzene	18.6	μg/kg	SW8260D	0.678	2.00	20.00	0	92.8	56 - 125				
1,2-Dichloroethane	21.3	μg/kg	SW8260D	0.118	2.00	20.00	0	107	79 - 135				
1,2-Dichloropropane	20.2	μg/kg	SW8260D	0.649	2.00	20.00	0	101	68 - 133				
1,3-Dichlorobenzene	19.8	μg/kg	SW8260D	1.03	2.00	20.00	0	98.8	45 - 135				
1,4-Dichlorobenzene	19.7	μg/kg	SW8260D	0.850	2.00	20.00	0	98.4	43 - 135				
1,4-Dioxane	128	μg/kg	SW8260D	27.7	50.0	200.0	0	63.8	58 - 146				
2-Butanone	33.9	μg/kg	SW8260D	3.02	10.0	20.00	0	170	56 - 184				
2-Hexanone	26.5	μg/kg	SW8260D	2.06	5.00	20.00	0	132	61 - 192				
4-Methyl-2-pentanone	18.3	μg/kg	SW8260D	1.75	5.00	20.00	0	91.4	58 - 145				
Acetone	32.6	μg/kg	SW8260D	8.22	10.0	20.00	0	163	17 - 296				
Benzene	18.9	μg/kg	SW8260D	0.338	2.00	20.00	0	94.4	70 - 140				
Bromochloromethane	18.0	μg/kg	SW8260D	0.239	2.00	20.00	0	90.3	69 - 123				
Bromodichloromethane	21.9	μg/kg	SW8260D	0.796	2.00	20.00	0	110	76 - 140				
Bromoform	20.2	μg/kg	SW8260D	0.289	2.00	20.00	0	101	71 - 175				
Bromomethane	13.8	μg/kg	SW8260D	2.61	5.00	20.00	0	69.1	10 - 168				
Carbon disulfide	19.0	μg/kg	SW8260D	0.247	2.00	20.00	0	94.8	31 - 174				
Carbon tetrachloride	24.3	μg/kg	SW8260D	0.419	2.00	20.00	0	121	58 - 145				
Chlorobenzene	19.4	μg/kg	SW8260D	0.535	2.00	20.00	0	97.0	61 - 125				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2103147Dept:MSVOA

Project:

 2103147
 Dept:
 MSVOA

 Forsey's Cleaners MW's 16-20 / 1210149
 QC Type:
 LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-3 030521B	Date Analyzed:	03/05/202	21 1802h										
Test Code: 8260D-S													
Chloroethane	14.8	$\mu g/kg$	SW8260D	1.19	2.00	20.00	0	74.0	10 - 161				
Chloroform	20.6	$\mu g/kg$	SW8260D	0.660	2.00	20.00	0	103	74 - 135				
Chloromethane	17.1	$\mu g/kg$	SW8260D	1.59	3.00	20.00	0	85.4	30 - 149				
cis-1,2-Dichloroethene	18.3	$\mu g/kg$	SW8260D	0.329	2.00	20.00	0	91.3	63 - 142				
cis-1,3-Dichloropropene	20.1	$\mu g/kg$	SW8260D	0.305	2.00	20.00	0	100	67 - 127				
Cyclohexane	18.4	$\mu g/kg$	SW8260D	0.800	2.00	20.00	0	92.0	44 - 162				
Dibromochloromethane	19.6	$\mu g/kg$	SW8260D	0.136	2.00	20.00	0	97.9	76 - 121				
Dichlorodifluoromethane	15.0	μg/kg	SW8260D	1.17	2.00	20.00	0	75.1	20 - 130				
Ethylbenzene	19.3	μg/kg	SW8260D	0.675	2.00	20.00	0	96.7	52 - 140				
Isopropylbenzene	20.4	μg/kg	SW8260D	1.75	2.00	20.00	0	102	50 - 140				
m,p-Xylene	43.1	μg/kg	SW8260D	0.811	2.00	40.00	0	108	44 - 142				
Methyl Acetate	33.3	μg/kg	SW8260D	2.20	5.00	20.00	0	167	70 - 240				
Methyl tert-butyl ether	17.0	$\mu g/kg$	SW8260D	0.210	2.00	20.00	0	84.8	60 - 128				
Methylcyclohexane	22.8	$\mu g/kg$	SW8260D	1.20	2.00	20.00	0	114	41 - 171				
Methylene chloride	15.6	$\mu g/kg$	SW8260D	2.38	5.00	20.00	0	77.8	10 - 128				
Naphthalene	14.2	μg/kg	SW8260D	1.03	2.00	20.00	0	71.0	43 - 135				
o-Xylene	18.2	$\mu g/kg$	SW8260D	0.696	2.00	20.00	0	91.0	44 - 142				
Styrene	19.7	μg/kg	SW8260D	0.739	2.00	20.00	0	98.4	56 - 140				
Tetrachloroethene	24.3	μg/kg	SW8260D	0.460	2.00	20.00	0	122	40 - 200				
Toluene	19.9	μg/kg	SW8260D	0.448	2.00	20.00	0	99.4	54 - 138				
trans-1,2-Dichloroethene	18.9	μg/kg	SW8260D	0.261	2.00	20.00	0	94.3	57 - 175				
trans-1,3-Dichloropropene	20.5	μg/kg	SW8260D	0.285	2.00	20.00	0	102	66 - 117				
Trichloroethene	22.6	μg/kg	SW8260D	0.356	2.00	20.00	0	113	61 - 143				
Trichlorofluoromethane	22.6	μg/kg	SW8260D	0.234	2.00	20.00	0	113	10 - 140				
Vinyl chloride	14.8	μg/kg	SW8260D	0.196	1.00	20.00	0	74.2	47 - 135				
Surr: 1,2-Dichloroethane-d4	53.9	μg/kg	SW8260D			50.00		108	70 - 145				
Surr: 4-Bromofluorobenzene	45.4	μg/kg	SW8260D			50.00		90.8	70 - 128				
Surr: Dibromofluoromethane	46.7	μg/kg	SW8260D			50.00		93.5	70 - 133				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2103147

Project: Forsey's Cleaners MW's 16-20 / 1210149

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-3 030521BTest Code:8260D-S	Date Analyzed:	03/05/202	21 1802h										
Surr: Toluene-d8	46.4	μg/kg	SW8260D			50.00		92.8	70 - 123				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Forsey's Cleaners MW's 16-20 / 1210149

Client:

Project:

Lab Set ID: 2103147

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-3 030521BTest Code:8260D-S	Date Analyzed:	03/05/20	21 1822h										
1,1,1-Trichloroethane	< 2.00	μg/kg	SW8260D	0.231	2.00								
1,1,2,2-Tetrachloroethane	< 2.00	μg/kg	SW8260D	0.312	2.00								
1,1,2-Trichloro-1,2,2-trifluoroethane	< 2.00	μg/kg	SW8260D	0.934	2.00								
1,1,2-Trichloroethane	< 2.00	μg/kg	SW8260D	0.178	2.00								
1,1-Dichloroethane	< 2.00	μg/kg	SW8260D	0.131	2.00								
1,1-Dichloroethene	< 2.00	μg/kg	SW8260D	0.612	2.00								
1,2,3-Trichlorobenzene	< 2.00	μg/kg	SW8260D	1.03	2.00								
1,2,4-Trichlorobenzene	< 2.00	μg/kg	SW8260D	1.18	2.00								
1,2-Dibromo-3-chloropropane	< 5.00	μg/kg	SW8260D	0.666	5.00								
1,2-Dibromoethane	< 2.00	μg/kg	SW8260D	0.260	2.00								
1,2-Dichlorobenzene	< 2.00	μg/kg	SW8260D	0.678	2.00								
1,2-Dichloroethane	< 2.00	μg/kg	SW8260D	0.118	2.00								
1,2-Dichloropropane	< 2.00	μg/kg	SW8260D	0.649	2.00								
1,3-Dichlorobenzene	< 2.00	μg/kg	SW8260D	1.03	2.00								
1,4-Dichlorobenzene	< 2.00	μg/kg	SW8260D	0.850	2.00								
1,4-Dioxane	< 50.0	μg/kg	SW8260D	27.7	50.0								
2-Butanone	< 10.0	μg/kg	SW8260D	3.02	10.0								
2-Hexanone	< 5.00	μg/kg	SW8260D	2.06	5.00								
4-Methyl-2-pentanone	< 5.00	μg/kg	SW8260D	1.75	5.00								
Acetone	< 10.0	μg/kg	SW8260D	8.22	10.0								
Benzene	< 2.00	μg/kg	SW8260D	0.338	2.00								
Bromochloromethane	< 2.00	μg/kg	SW8260D	0.239	2.00								
Bromodichloromethane	< 2.00	μg/kg	SW8260D	0.796	2.00								
Bromoform	< 2.00	μg/kg	SW8260D	0.289	2.00								
Bromomethane	< 5.00	μg/kg	SW8260D	2.61	5.00								
Carbon disulfide	< 2.00	μg/kg	SW8260D	0.247	2.00								
Carbon tetrachloride	< 2.00	μg/kg	SW8260D	0.419	2.00								
Chlorobenzene	< 2.00	μg/kg	SW8260D	0.535	2.00								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Applied Geotechnical

Forsey's Cleaners MW's 16-20 / 1210149

Client:

Project:

Lab Set ID: 2103147

Contact: Joe DeGooyer

> Dept: QC Type: MBLK

MSVOA

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-3 030521BTest Code:8260D-S	Date Analyzed:	03/05/20	21 1822h										
Chloroethane	< 2.00	μg/kg	SW8260D	1.19	2.00								
Chloroform	< 2.00	μg/kg	SW8260D	0.660	2.00								
Chloromethane	< 3.00	μg/kg	SW8260D	1.59	3.00								
cis-1,2-Dichloroethene	< 2.00	μg/kg	SW8260D	0.329	2.00								
cis-1,3-Dichloropropene	< 2.00	μg/kg	SW8260D	0.305	2.00								
Cyclohexane	< 2.00	μg/kg	SW8260D	0.800	2.00								
Dibromochloromethane	< 2.00	μg/kg	SW8260D	0.136	2.00								
Dichlorodifluoromethane	< 2.00	μg/kg	SW8260D	1.17	2.00								
Ethylbenzene	< 2.00	μg/kg	SW8260D	0.675	2.00								
Isopropylbenzene	< 2.00	μg/kg	SW8260D	1.75	2.00								
m,p-Xylene	< 2.00	μg/kg	SW8260D	0.811	2.00								
Methyl Acetate	< 5.00	μg/kg	SW8260D	2.20	5.00								
Methyl tert-butyl ether	< 2.00	μg/kg	SW8260D	0.210	2.00								
Methylcyclohexane	< 2.00	μg/kg	SW8260D	1.20	2.00								
Methylene chloride	< 5.00	μg/kg	SW8260D	2.38	5.00								
Naphthalene	< 2.00	μg/kg	SW8260D	1.03	2.00								
o-Xylene	< 2.00	μg/kg	SW8260D	0.696	2.00								
Styrene	< 2.00	μg/kg	SW8260D	0.739	2.00								
Tetrachloroethene	< 2.00	μg/kg	SW8260D	0.460	2.00								
Toluene	< 2.00	μg/kg	SW8260D	0.448	2.00								
trans-1,2-Dichloroethene	< 2.00	μg/kg	SW8260D	0.261	2.00								
trans-1,3-Dichloropropene	< 2.00	μg/kg	SW8260D	0.285	2.00								
Trichloroethene	< 2.00	μg/kg	SW8260D	0.356	2.00								
Trichlorofluoromethane	< 2.00	μg/kg	SW8260D	0.234	2.00								
Vinyl chloride	< 1.00	μg/kg	SW8260D	0.196	1.00								
Surr: 1,2-Dichloroethane-d4	54.6	μg/kg	SW8260D			50.00		109	70 - 145				
Surr: 4-Bromofluorobenzene	44.6	μg/kg	SW8260D			50.00		89.2	70 - 128				
Surr: Dibromofluoromethane	45.7	μg/kg	SW8260D			50.00		91.4	70 - 133				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2103147

Project: Forsey's Cleaners MW's 16-20 / 1210149

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 030521B Test Code: 8260D-S	Date Analyzed	: 03/05/202	21 1822h										
Surr: Toluene-d8	45.0	μg/kg	SW8260D			50.00		90.1	70 - 123				

Report Date: 3/10/2021 Page 19 of 25

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Joe DeGooyer **Contact:**

Lab Set ID: 2103147 Dept: MSVOA Forsey's Cleaners MW's 16-20 / 1210149 QC Type: MS **Project:** Donorting Snike Ref

Applied Geotechnical

Client:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103147-001AMS	Date Analyze	d: 03/05/202	1 1903h										
Test Code: 8260D-S													
1,1,1-Trichloroethane	28.4	μg/kg-dry	SW8260D	0.288	2.50	24.95	0	114	64 - 137				
1,1,2,2-Tetrachloroethane	24.6	μg/kg-dry	SW8260D	0.389	2.50	24.95	0	98.7	74 - 150				
1,1,2-Trichloro-1,2,2-trifluoroethane	27.9	μg/kg-dry	SW8260D	1.17	2.50	24.95	0	112	37 - 170				
1,1,2-Trichloroethane	23.7	μg/kg-dry	SW8260D	0.222	2.50	24.95	0	95.0	80 - 117				
1,1-Dichloroethane	22.6	μg/kg-dry	SW8260D	0.163	2.50	24.95	0	90.8	70 - 175				
1,1-Dichloroethene	23.5	μg/kg-dry	SW8260D	0.764	2.50	24.95	0	94.1	42 - 210				
1,2,3-Trichlorobenzene	17.7	μg/kg-dry	SW8260D	1.29	2.50	24.95	0	70.9	36 - 135				
1,2,4-Trichlorobenzene	17.5	μg/kg-dry	SW8260D	1.47	2.50	24.95	0	70.2	21 - 140				
1,2-Dibromo-3-chloropropane	19.0	μg/kg-dry	SW8260D	0.831	6.24	24.95	0	76.2	62 - 132				
1,2-Dibromoethane	21.9	μg/kg-dry	SW8260D	0.324	2.50	24.95	0	87.6	76 - 125				
1,2-Dichlorobenzene	21.3	μg/kg-dry	SW8260D	0.846	2.50	24.95	0	85.2	56 - 125				
1,2-Dichloroethane	27.5	μg/kg-dry	SW8260D	0.147	2.50	24.95	0	110	79 - 135				
1,2-Dichloropropane	25.2	μg/kg-dry	SW8260D	0.810	2.50	24.95	0	101	68 - 133				
1,3-Dichlorobenzene	22.3	μg/kg-dry	SW8260D	1.29	2.50	24.95	0	89.6	45 - 135				
1,4-Dichlorobenzene	22.5	μg/kg-dry	SW8260D	1.06	2.50	24.95	0	90.3	43 - 135				
1,4-Dioxane	170	μg/kg-dry	SW8260D	34.6	62.4	249.5	0	68.3	58 - 146				
2-Butanone	41.1	μg/kg-dry	SW8260D	3.77	12.5	24.95	0	165	56 - 184				
2-Hexanone	32.1	μg/kg-dry	SW8260D	2.57	6.24	24.95	0	129	61 - 192				
4-Methyl-2-pentanone	23.3	μg/kg-dry	SW8260D	2.18	6.24	24.95	0	93.4	58 - 145				
Acetone	38.7	μg/kg-dry	SW8260D	10.3	12.5	24.95	0	155	17 - 296				
Benzene	24.8	μg/kg-dry	SW8260D	0.422	2.50	24.95	0	99.2	70 - 140				
Bromochloromethane	21.8	μg/kg-dry	SW8260D	0.298	2.50	24.95	0	87.4	69 - 123				
Bromodichloromethane	27.4	μg/kg-dry	SW8260D	0.993	2.50	24.95	0	110	76 - 140				
Bromoform	25.1	μg/kg-dry	SW8260D	0.361	2.50	24.95	0	101	71 - 175				
Bromomethane	17.2	μg/kg-dry	SW8260D	3.26	6.24	24.95	0	68.8	10 - 168				
Carbon disulfide	21.6	μg/kg-dry	SW8260D	0.308	2.50	24.95	0	86.7	31 - 174				
Carbon tetrachloride	28.7	μg/kg-dry	SW8260D	0.523	2.50	24.95	0	115	58 - 145				
Chlorobenzene	23.5	μg/kg-dry	SW8260D	0.667	2.50	24.95	0	94.3	61 - 125				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2103147Dept:MSVOA

Forsey's Cleaners MW's 16-20 / 1210149 QC Type: MS

Project:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103147-001AMS Test Code: 8260D-S	Date Analyz	ed: 03/05/202	1 1903h										
Chloroethane	17.2	μg/kg-dry	SW8260D	1.48	2.50	24.95	0	69.0	10 - 161				
Chloroform	25.2	μg/kg-dry	SW8260D	0.823	2.50	24.95	0	101	74 - 135				
Chloromethane	20.4	μg/kg-dry	SW8260D	1.98	3.74	24.95	0	81.7	30 - 149				
cis-1,2-Dichloroethene	21.1	μg/kg-dry	SW8260D	0.410	2.50	24.95	0	84.6	63 - 142				
cis-1,3-Dichloropropene	24.7	μg/kg-dry	SW8260D	0.381	2.50	24.95	0	99.0	67 - 127				
Cyclohexane	20.8	μg/kg-dry	SW8260D	0.998	2.50	24.95	0	83.5	44 - 162				
Dibromochloromethane	24.1	μg/kg-dry	SW8260D	0.170	2.50	24.95	0	96.5	76 - 121				
Dichlorodifluoromethane	17.0	μg/kg-dry	SW8260D	1.46	2.50	24.95	0	68.3	20 - 130				
Ethylbenzene	23.4	μg/kg-dry	SW8260D	0.842	2.50	24.95	0	93.8	52 - 140				
Isopropylbenzene	24.4	μg/kg-dry	SW8260D	2.18	2.50	24.95	0	97.8	50 - 140				
m,p-Xylene	49.9	μg/kg-dry	SW8260D	1.01	2.50	49.90	0	100	44 - 142				
Methyl Acetate	48.1	μg/kg-dry	SW8260D	2.74	6.24	24.95	0	193	70 - 240				
Methyl tert-butyl ether	20.4	μg/kg-dry	SW8260D	0.262	2.50	24.95	0	81.8	60 - 128				
Methylcyclohexane	26.0	μg/kg-dry	SW8260D	1.50	2.50	24.95	0	104	41 - 171				
Methylene chloride	19.6	μg/kg-dry	SW8260D	2.97	6.24	24.95	0	78.5	10 - 128				
Naphthalene	14.7	μg/kg-dry	SW8260D	1.29	2.50	24.95	0	58.8	43 - 135				
o-Xylene	22.3	μg/kg-dry	SW8260D	0.868	2.50	24.95	0	89.5	44 - 142				
Styrene	23.1	μg/kg-dry	SW8260D	0.922	2.50	24.95	0	92.8	56 - 140				
Tetrachloroethene	32.7	μg/kg-dry	SW8260D	0.574	2.50	24.95	0	131	40 - 200				
Toluene	23.9	μg/kg-dry	SW8260D	0.559	2.50	24.95	0	95.9	54 - 138				
trans-1,2-Dichloroethene	22.3	μg/kg-dry	SW8260D	0.326	2.50	24.95	0	89.3	57 - 175				
trans-1,3-Dichloropropene	25.1	μg/kg-dry	SW8260D	0.356	2.50	24.95	0	101	66 - 117				
Trichloroethene	26.9	μg/kg-dry	SW8260D	0.444	2.50	24.95	0	108	61 - 143				
Trichlorofluoromethane	25.9	μg/kg-dry	SW8260D	0.292	2.50	24.95	0	104	10 - 140				
Vinyl chloride	18.1	μg/kg-dry	SW8260D	0.245	1.25	24.95	0	72.6	47 - 135				
Surr: 1,2-Dichloroethane-d4	72.9	μg/kg-dry	SW8260D			62.38		117	70 - 145				
Surr: 4-Bromofluorobenzene	54.7	μg/kg-dry	SW8260D			62.38		87.6	70 - 128				
Surr: Dibromofluoromethane	59.0	μg/kg-dry	SW8260D			62.38		94.6	70 - 133				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2103147Dept:MSVOA

Project: Forsey's Cleaners MW's 16-20 / 1210149 QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103147-001AMS Test Code: 8260D-S	Date Analyze	d: 03/05/202	21 1903h										
Surr: Toluene-d8	59.1	μg/kg-dry	SW8260D			62.38		94.7	70 - 123				

A

Project:

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical
Lab Set ID: 2103147

Forsey's Cleaners MW's 16-20 / 1210149

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103147-001AMSD Test Code: 8260D-S	Date Analyze	ed: 03/05/202	1 1923h										
1,1,1-Trichloroethane	28.7	μg/kg-dry	SW8260D	0.291	2.52	25.20	0	114	64 - 137	28.4	1.17	35	
1,1,2,2-Tetrachloroethane	24.7	μg/kg-dry	SW8260D	0.393	2.52	25.20	0	98.0	74 - 150	24.6	0.334	35	
1,1,2-Trichloro-1,2,2-trifluoroethane	27.4	μg/kg-dry	SW8260D	1.18	2.52	25.20	0	109	37 - 170	27.9	1.72	35	
1,1,2-Trichloroethane	25.5	μg/kg-dry	SW8260D	0.224	2.52	25.20	0	101	80 - 117	23.7	7.17	35	
1,1-Dichloroethane	23.4	μg/kg-dry	SW8260D	0.165	2.52	25.20	0	93.0	70 - 175	22.6	3.44	35	
1,1-Dichloroethene	24.0	μg/kg-dry	SW8260D	0.771	2.52	25.20	0	95.4	42 - 210	23.5	2.37	35	
1,2,3-Trichlorobenzene	18.6	μg/kg-dry	SW8260D	1.30	2.52	25.20	0	73.9	36 - 135	17.7	5.21	35	
1,2,4-Trichlorobenzene	17.8	μg/kg-dry	SW8260D	1.49	2.52	25.20	0	70.6	21 - 140	17.5	1.56	35	
1,2-Dibromo-3-chloropropane	19.6	μg/kg-dry	SW8260D	0.839	6.30	25.20	0	77.7	62 - 132	19	3.01	35	
1,2-Dibromoethane	23.2	μg/kg-dry	SW8260D	0.328	2.52	25.20	0	92.2	76 - 125	21.9	6.06	35	
1,2-Dichlorobenzene	21.9	μg/kg-dry	SW8260D	0.854	2.52	25.20	0	86.9	56 - 125	21.3	2.85	35	
1,2-Dichloroethane	29.0	μg/kg-dry	SW8260D	0.149	2.52	25.20	0	115	79 - 135	27.5	5.12	35	
1,2-Dichloropropane	26.3	μg/kg-dry	SW8260D	0.818	2.52	25.20	0	104	68 - 133	25.2	4.06	35	
1,3-Dichlorobenzene	23.0	μg/kg-dry	SW8260D	1.30	2.52	25.20	0	91.4	45 - 135	22.3	3.04	35	
1,4-Dichlorobenzene	22.8	μg/kg-dry	SW8260D	1.07	2.52	25.20	0	90.6	43 - 135	22.5	1.33	35	
1,4-Dioxane	163	μg/kg-dry	SW8260D	34.9	63.0	252.0	0	64.6	58 - 146	170	4.47	35	
2-Butanone	23.8	μg/kg-dry	SW8260D	3.81	12.6	25.20	0	94.6	56 - 184	41.1	53.2	35	<u>@</u>
2-Hexanone	32.1	μg/kg-dry	SW8260D	2.60	6.30	25.20	0	127	61 - 192	32.1	0.0586	35	
4-Methyl-2-pentanone	23.8	μg/kg-dry	SW8260D	2.21	6.30	25.20	0	94.3	58 - 145	23.3	1.95	35	
Acetone	40.4	μg/kg-dry	SW8260D	10.4	12.6	25.20	0	160	17 - 296	38.7	4.39	35	
Benzene	25.7	μg/kg-dry	SW8260D	0.426	2.52	25.20	0	102	70 - 140	24.8	3.87	35	
Bromochloromethane	23.5	μg/kg-dry	SW8260D	0.301	2.52	25.20	0	93.2	69 - 123	21.8	7.47	35	
Bromodichloromethane	28.8	μg/kg-dry	SW8260D	1.00	2.52	25.20	0	114	76 - 140	27.4	4.92	35	
Bromoform	25.4	μg/kg-dry	SW8260D	0.364	2.52	25.20	0	101	71 - 175	25.1	1.29	35	
Bromomethane	18.1	μg/kg-dry	SW8260D	3.29	6.30	25.20	0	71.8	10 - 168	17.2	5.19	35	
Carbon disulfide	22.2	μg/kg-dry	SW8260D	0.311	2.52	25.20	0	88.1	31 - 174	21.6	2.60	35	
Carbon tetrachloride	29.5	μg/kg-dry	SW8260D	0.528	2.52	25.20	0	117	58 - 145	28.7	2.67	35	
Chlorobenzene	24.1	μg/kg-dry	SW8260D	0.674	2.52	25.20	0	95.8	61 - 125	23.5	2.63	35	

Report Date: 3/10/2021 Page 23 of 25

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MSD

Project: Forsey's Cleaners MW's 16-20 / 1210149

Applied Geotechnical

Client:

Lab Set ID: 2103147

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103147-001AMSD	Date Analyze	d: 03/05/202	1 1923h										
Test Code: 8260D-S													
Chloroethane	17.9	μg/kg-dry	SW8260D	1.50	2.52	25.20	0	71.0	10 - 161	17.2	3.92	35	
Chloroform	25.4	μg/kg-dry	SW8260D	0.832	2.52	25.20	0	101	74 - 135	25.2	0.499	35	
Chloromethane	20.3	μg/kg-dry	SW8260D	2.00	3.78	25.20	0	80.6	30 - 149	20.4	0.298	35	
cis-1,2-Dichloroethene	22.4	μg/kg-dry	SW8260D	0.415	2.52	25.20	0	88.9	63 - 142	21.1	5.89	35	
cis-1,3-Dichloropropene	25.9	μg/kg-dry	SW8260D	0.384	2.52	25.20	0	103	67 - 127	24.7	4.62	35	
Cyclohexane	21.5	μg/kg-dry	SW8260D	1.01	2.52	25.20	0	85.4	44 - 162	20.8	3.24	35	
Dibromochloromethane	24.5	μg/kg-dry	SW8260D	0.171	2.52	25.20	0	97.4	76 - 121	24.1	1.92	35	
Dichlorodifluoromethane	17.4	μg/kg-dry	SW8260D	1.47	2.52	25.20	0	68.9	20 - 130	17	1.87	35	
Ethylbenzene	23.5	μg/kg-dry	SW8260D	0.851	2.52	25.20	0	93.1	52 - 140	23.4	0.299	35	
Isopropylbenzene	23.7	μg/kg-dry	SW8260D	2.21	2.52	25.20	0	93.8	50 - 140	24.4	3.08	35	
m,p-Xylene	49.8	μg/kg-dry	SW8260D	1.02	2.52	50.40	0	98.9	44 - 142	49.9	0.212	35	
Methyl Acetate	48.6	μg/kg-dry	SW8260D	2.77	6.30	25.20	0	193	70 - 240	48.1	1.15	35	
Methyl tert-butyl ether	22.3	μg/kg-dry	SW8260D	0.265	2.52	25.20	0	88.4	60 - 128	20.4	8.81	35	
Methylcyclohexane	26.1	μg/kg-dry	SW8260D	1.51	2.52	25.20	0	104	41 - 171	26	0.610	35	
Methylene chloride	20.5	μg/kg-dry	SW8260D	3.00	6.30	25.20	0	81.4	10 - 128	19.6	4.56	35	
Naphthalene	15.5	μg/kg-dry	SW8260D	1.30	2.52	25.20	0	61.6	43 - 135	14.7	5.65	35	
o-Xylene	22.3	μg/kg-dry	SW8260D	0.877	2.52	25.20	0	88.4	44 - 142	22.3	0.185	35	
Styrene	23.7	μg/kg-dry	SW8260D	0.931	2.52	25.20	0	94.2	56 - 140	23.1	2.49	35	
Tetrachloroethene	32.2	μg/kg-dry	SW8260D	0.580	2.52	25.20	0	128	40 - 200	32.7	1.55	35	
Toluene	24.2	μg/kg-dry	SW8260D	0.565	2.52	25.20	0	96.0	54 - 138	23.9	1.10	35	
trans-1,2-Dichloroethene	22.3	μg/kg-dry	SW8260D	0.329	2.52	25.20	0	88.4	57 - 175	22.3	0.0745	35	
trans-1,3-Dichloropropene	26.5	μg/kg-dry	SW8260D	0.359	2.52	25.20	0	105	66 - 117	25.1	5.46	35	
Trichloroethene	28.0	μg/kg-dry	SW8260D	0.449	2.52	25.20	0	111	61 - 143	26.9	4.01	35	
Trichlorofluoromethane	26.0	μg/kg-dry	SW8260D	0.295	2.52	25.20	0	103	10 - 140	25.9	0.125	35	
Vinyl chloride	17.8	μg/kg-dry	SW8260D	0.247	1.26	25.20	0	70.7	47 - 135	18.1	1.59	35	
Surr: 1,2-Dichloroethane-d4	74.2	μg/kg-dry	SW8260D			63.01		118	70 - 145				
Surr: 4-Bromofluorobenzene	55.7	μg/kg-dry	SW8260D			63.01		88.4	70 - 128				
Surr: Dibromofluoromethane	60.8	μg/kg-dry	SW8260D			63.01		96.6	70 - 133				

Report Date: 3/10/2021 Page 24 of 25

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2103147

Project: Forsey's Cle

Forsey's Cleaners MW's 16-20 / 1210149

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103147-001AMSD Test Code: 8260D-S	Date Analyzed	d: 03/05/202	1 1923h										
Surr: Toluene-d8	58.4	μg/kg-dry	SW8260D			63.01		92.7	70 - 123				

⁽a) - High RPD due to suspected sample non-homogeneity or matrix interference.

UL

American West Analytical Laboratories

5 Day Rush

WORK ORDER Summary

Work Order: **2103147**

Page 1 of 1

Client:

Applied Geotechnical

HOK_

COC Emailed

Due Date: 3/11/2021

Client ID: Project:

APP100

Forsey's Cleaners MW's 16-20 / 1210149

Contact: QC Level: Joe DeGooyer

II+

WO Type: Standard

5 Day Rush: OC 2+.:

Sample ID							BB
	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
2103147-001A	MW-16 @ 6'-7'	3/4/2021 0935h	3/4/2021 1558h	8260D-S <i>Test Group: 8260D</i>	Aqueous 0-S-AWAL; # of Analytes: 53 / # of Surr: 4	VOCFridge/pmoist	2
				PMOIST		VOCFridge/pmoist	
2103147-002A	MW-17 @ 6.5'-7.5'	3/4/2021 1020h	3/4/2021 1558h	8260D-S <i>Test Group: 8260D</i>	Aqueous O-S-AWAL; # of Analytes: 53 / # of Surr: 4	VOCFridge/pmoist	2
				PMOIST		VOCFridge/pmoist	***************************************
2103147-003A	MW-18 @ 5'-6'	3/4/2021 1055h	3/4/2021 1558h	8260D-S <i>Test Group: 8260E</i>	Aqueous D-S-AWAL; # of Analytes: 53 / # of Surr: 4	VOCFridge/pmoist	2
				PMOIST		VOCFridge/pmoist	
2103147-004A	MW-19 @ 6'-7'	3/4/2021 1130h	3/4/2021 1558h	8260D-S <i>Test Group: 8260L</i>	Aqueous D-S-AWAL; # of Analytes: 53 / # of Surr: 4	VOCFridge/pmoist	2
				PMOIST		VOCFridge/pmoist	
2103147-005A	MW-20 @ 8'-9'	3/4/2021 1215h	3/4/2021 1558h	8260D-S <i>Test Group: 8260E</i>	Aqueous D-S-AWAL; # of Analytes: 53 / # of Surr: 4	VOCFridge/pmoist	2
				PMOIST		VOCFridge/pmoist	
2103147-006A	MW-20 @ 10'-11'	3/4/2021 1220h	3/4/2021 1558h	8260D-S <i>Test Group: 8260L</i>	Aqueous D-S-AWAL; # of Analytes: 53 / # of Surr: 4	VOCFridge/pmoist	2
				PMOIST		VOCFridge/pmoist	

American West Analytical Laboratories

CHAIN OF CUSTODY

2/03	147
AWAI Lab	Sample Set #

3440 S. 700 W. Salt Lake City, UT 84119 All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation. Phone # (801) 263-8686 Toll Free # (888) 263-8686 Fax # (801) 263-8687 Email awal@awal-labs.com QC Level: Turn Around Time: Due Date: Rush sets received after 4:00 pm are 1 2 (2+) 3 3+ 1 2 3 4(5) Stnd considered received on the next business day. www.awal-labs.com ☐ Report down to the MDL Geotechnical Engineering Consultants Unless other arrangements have been ☐ Include EDD: made, signed reports will be emailed by ☐ Lab Filter for: Porkwa Address: 5:00 pm on the day they are due. ☐ Field Filtered For: OF OPS HATU City, State, Zip: Laboratory Use Only Contact: For Compliance With: Cell #: 80 - 65 - 5899 201-566-6399 Phone #: □ NELAP COC Tape Was: □ RCRA 1 Present on Outer Package E-mail: □ CWA □ SDWA Forsen's Cleaners MW'S 110-20 Project Name: □ ELAP / A2LA Unbroken on Outer Pack □ NLLAP 100 Project #: 1210149 ☐ Non-Compliance ☐ Other: PO #: . n' 💦 Sample Matrix Joe De 6 vones Sampler Name: Known Hazards 3 Unbroken & Date Time Sample Site ID: ‡o Sample Comments Sampled Sampled Samples Were: Shipped or hand delivere nw-16 0 3/1/2 9:35 3/4/21 10:20 MW-17e Ambient or Chilled 314/2 mn-18 p 10:55 Temperature 3/4/21 11130 M64-19 e 3/4/21 12:15 5 MW-20 e Mw-20 e 3/4/2 12,20 Checked at bench Received Within Tabels and COC Record Match? Special Instructions: ^{ate;}3/4/21 en 121 ¹⁵ 15:58 Time: 558 rint Name Relinquished by Sionature Signature Print Name Print Name: Relinquished by Received by: Signature Sionature Print Name Print Name:

Joe DeGooyer **Applied Geotechnical** 600 West Sandy Parkway Sandy, UT 84070

TEL: (801) 566-6399

RE: Forsey's Cleaners MW's 16-20 / 1210149

3440 South 700 West Salt Lake City, UT 84119 Dear Joe DeGooyer: Lab Set ID: 2103307

American West Analytical Laboratories (AWAL) is accredited by The National

state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

American West Analytical Laboratories received sample(s) on 3/10/2021 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You. Approved by: Laboratory Director or designee

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

Lab Sample ID: 2103307-001A

Client Sample ID: MW-16

Analytical Results

Collection Date: 3/10/2021 1225h **Received Date:** 3/10/2021 1705h

VOAs AWAL List by GC/MS Method 8260D/5030C

Test Code: 8260D-W

Analyzed: 3/11/2021 1034h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	#
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Acetone	67-64-1	10.0	< 10.0	
Benzene	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	
Chloroform	67-66-3	2.00	< 2.00	L

Report Date: 3/16/2021 Page 2 of 29

Lab Sample ID: 2103307-001A **Client Sample ID:** MW-16

Analyzed: 3/11/2021 1034h Extracted:

Units: μg/L Dilution Factor: 1 Method: SW8260D

American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	Chloromethane	74-87-3	3.00	< 3.00	
	cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00	
	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00	
	Cyclohexane	110-82-7	2.00	< 2.00	#
3440 South 700 West	Dibromochloromethane	124-48-1	2.00	< 2.00	
Salt Lake City, UT 84119	Dichlorodifluoromethane	75-71-8	2.00	< 2.00	#
	Ethylbenzene	100-41-4	2.00	< 2.00	
	Isopropylbenzene	98-82-8	2.00	< 2.00	
Phone: (801) 263-8686	m,p-Xylene	179601-23-1	2.00	< 2.00	#
Toll Free: (888) 263-8686	Methyl Acetate	79-20-9	5.00	< 5.00	
Fax: (801) 263-8687	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00	
e-mail: awal@awal-labs.com	Methylcyclohexane	108-87-2	2.00	< 2.00	#
	Methylene chloride	75-09-2	2.00	< 2.00	
web: www.awal-labs.com	Naphthalene	91-20-3	2.00	< 2.00	
	o-Xylene	95-47-6	2.00	< 2.00	
	Styrene	100-42-5	2.00	< 2.00	
Kyle F. Gross	Tetrachloroethene	127-18-4	2.00	< 2.00	
Laboratory Director	Toluene	108-88-3	2.00	< 2.00	
T D 1	trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00	
Jose Rocha	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00	
QA Officer	Trichloroethene	79-01-6	2.00	< 2.00	
	Trichlorofluoromethane	75-69-4	2.00	< 2.00	#
	Vinyl chloride	75-01-4	1.00	< 1.00	#
	Surrogata Unita ug/I CAS	Dogult Amount 6	inited % DEC	Limita	Ouel

Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	60.0	50.00	120	80-136	
Surr: 4-Brom	nofluorobenzene	460-00-4	44.7	50.00	89.5	85-121	
Surr: Dibrom	nofluoromethane	1868-53-7	57.4	50.00	115	78-132	
Surr: Tolueno	e-d8	2037-26-5	49.8	50.00	99.5	81-123	

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

Lab Sample ID: 2103307-002A

Client Sample ID: MW-17

Analytical Results

Collection Date: 3/10/2021 1300h **Received Date:** 3/10/2021 1705h

VOAs AWAL List by GC/MS Method 8260D/5030C

Test Code: 8260D-W

Analyzed: 3/12/2021 1032h **Extracted:**

Units: μg/L Dilution Factor: 10 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

CAS Reporting **Analytical** Compound Number Limit Result Qual Tetrachloroethene 127-18-4 20.0 388 Surrogate $\textbf{Units:} \quad \mu \, g/L$ CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 592 500.0 118 80-136 Surr: 4-Bromofluorobenzene 460-00-4 450 500.0 89.9 85-121 Surr: Dibromofluoromethane 1868-53-7 587 500.0 117 78-132 Surr: Toluene-d8 2037-26-5 499 500.0 99.9 81-123

0.0

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com

e-mail: awal@awal-labs.com

Analyzed: 3/11/2021 1322h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	#
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	

Report Date: 3/16/2021 Page 4 of 29

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Kyle F. Gross

Jose Rocha QA Officer

Laboratory Director

web: www.awal-labs.com

Salt Lake City, UT 84119

Lab Sample ID: 2103307-002A **Client Sample ID:** MW-17

Analyzed: 3/11/2021 1322h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Compound Acetone Benzene	CAS Number 67-64-1	Reporting Limit	Analytical Result	Qual
Benzene	67.64.1			Quai
	07-04-1	10.0	< 10.0	
	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	
Chloroform	67-66-3	2.00	< 2.00	L
Chloromethane	74-87-3	3.00	< 3.00	
cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00	
cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00	
Cyclohexane	110-82-7	2.00	< 2.00	#
Dibromochloromethane	124-48-1	2.00	< 2.00	
Dichlorodifluoromethane	75-71-8	2.00	< 2.00	#
Ethylbenzene	100-41-4	2.00	< 2.00	
Isopropylbenzene	98-82-8	2.00	< 2.00	
m,p-Xylene	179601-23-1	2.00	< 2.00	#
Methyl Acetate	79-20-9	5.00	< 5.00	
Methyl tert-butyl ether	1634-04-4	2.00	< 2.00	
Methylcyclohexane	108-87-2	2.00	< 2.00	#
Methylene chloride	75-09-2	2.00	< 2.00	
Naphthalene	91-20-3	2.00	< 2.00	
o-Xylene	95-47-6	2.00	< 2.00	
Styrene	100-42-5	2.00	< 2.00	
Toluene	108-88-3	2.00	< 2.00	
trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00	
trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00	
Trichloroethene	79-01-6	2.00	10.2	
Trichlorofluoromethane	75-69-4	2.00	< 2.00	#
Vinyl chloride	75-01-4	1.00	< 1.00	#

Report Date: 3/16/2021 Page 5 of 29

Lab Sample ID: 2103307-002A **Client Sample ID:** MW-17

Analyzed: 3/11/2021 1322h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	hloroethane-d4	17060-07-0	59.6	50.00	119	80-136	
Surr: 4-Brom	ofluorobenzene	460-00-4	44.7	50.00	89.4	85-121	
Surr: Dibrom	ofluoromethane	1868-53-7	57.4	50.00	115	78-132	
Surr: Toluene	e-d8	2037-26-5	48.8	50.00	97.5	81-123	

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

3440 South 700 West Salt Lake City, UT 84119 # - This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

 Lab Sample ID:
 2103307-003A

 Client Sample ID:
 MW-17 Duplicate

 Collection Date:
 3/10/2021
 1310h

 Received Date:
 3/10/2021
 1705h

Analytical Results VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 3/12/2021 1052h Extracted:

Units: µg/L Dilution Factor: 10 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

CAS Reporting **Analytical** Compound Number Limit Result Qual Tetrachloroethene 127-18-4 20.0 417 Surrogate $\textbf{Units:} \quad \mu \, g/L$ CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 602 500.0 120 80-136 Surr: 4-Bromofluorobenzene 460-00-4 466 500.0 93.2 85-121 Surr: Dibromofluoromethane 1868-53-7 586 500.0 117 78-132 Surr: Toluene-d8 2037-26-5 492 500.0 98.5 81-123

~ . ~

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com

e-mail: awal@awal-labs.com

Analyzed: 3/11/2021 1342h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	#
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	

Report Date: 3/16/2021 Page 7 of 29

Test Code: 8260D-W

Lab Sample ID: 2103307-003A **Client Sample ID:** MW-17 Duplicate

Analyzed: 3/11/2021 1342h **Extracted:**

Units: $\mu g/L$ Dilution Factor: 1 Method: SW8260D

American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	Acetone	67-64-1	10.0	< 10.0	
	Benzene	71-43-2	2.00	< 2.00	
	Bromochloromethane	74-97-5	2.00	< 2.00	
	Bromodichloromethane	75-27-4	2.00	< 2.00	
3440 South 700 West	Bromoform	75-25-2	2.00	< 2.00	
Lake City, UT 84119	Bromomethane	74-83-9	5.00	< 5.00	
	Carbon disulfide	75-15-0	2.00	< 2.00	#
	Carbon tetrachloride	56-23-5	2.00	< 2.00	
(801) 263-8686	Chlorobenzene	108-90-7	2.00	< 2.00	
(888) 263-8686	Chloroethane	75-00-3	2.00	< 2.00	
301) 263-8687	Chloroform	67-66-3	2.00	< 2.00	L
awal-labs.com	Chloromethane	74-87-3	3.00	< 3.00	
	cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00	
val-labs.com	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00	
	Cyclohexane	110-82-7	2.00	< 2.00	#
	Dibromochloromethane	124-48-1	2.00	< 2.00	
lyle F. Gross	Dichlorodifluoromethane	75-71-8	2.00	< 2.00	#
ory Director	Ethylbenzene	100-41-4	2.00	< 2.00	
	Isopropylbenzene	98-82-8	2.00	< 2.00	
Jose Rocha	m,p-Xylene	179601-23-1	2.00	< 2.00	#
QA Officer	Methyl Acetate	79-20-9	5.00	< 5.00	
	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00	
	Methylcyclohexane	108-87-2	2.00	< 2.00	#
	Methylene chloride	75-09-2	2.00	< 2.00	
	Naphthalene	91-20-3	2.00	< 2.00	
	o-Xylene	95-47-6	2.00	< 2.00	
	Styrene	100-42-5	2.00	< 2.00	
	Toluene	108-88-3	2.00	< 2.00	
	trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00	
	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00	
	Trichloroethene	79-01-6	2.00	11.4	
	Trichlorofluoromethane	75-69-4	2.00	< 2.00	#
	Vinyl chloride	75-01-4	1.00	< 1.00	#
	·	75 01 1	1.00	11.00	

Lab Sample ID: 2103307-003A **Client Sample ID:** MW-17 Duplicate

Analyzed: 3/11/2021 1342h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	hloroethane-d4	17060-07-0	60.4	50.00	121	80-136	
Surr: 4-Brom	ofluorobenzene	460-00-4	46.3	50.00	92.7	85-121	
Surr: Dibrom	ofluoromethane	1868-53-7	58.7	50.00	117	78-132	
Surr: Toluene	e-d8	2037-26-5	48.3	50.00	96.5	81-123	

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

- This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

3440 South 700 West Salt Lake City, UT 84119

sample.

Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 3/16/2021 Page 9 of 29

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

Lab Sample ID: 2103307-004A

Client Sample ID: MW-18

Analytical Results

Collection Date: 3/10/2021 1336h **Received Date:** 3/10/2021 1705h

VOAs AWAL List by GC/MS Method 8260D/5030C

Test Code: 8260D-W

Analyzed: 3/11/2021 1401h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Laboratory Director

Jose Rocha QA Officer

Kyle F. Gross

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	#
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Acetone	67-64-1	10.0	< 10.0	
Benzene	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	
Chloroform	67-66-3	2.00	< 2.00	L

Report Date: 3/16/2021 Page 10 of 29

Lab Sample ID: 2103307-004A **Client Sample ID:** MW-18

Analyzed: 3/11/2021 1401h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	Chloromethane		74-87-3	3.00	< 3.00	
	cis-1,2-Dichloroethene		156-59-2	2.00	< 2.00	
	cis-1,3-Dichloropropene		10061-01-5	2.00	< 2.00	
	Cyclohexane		110-82-7	2.00	< 2.00	#
3440 South 700 West	Dibromochloromethane		124-48-1	2.00	< 2.00	
Salt Lake City, UT 84119	Dichlorodifluoromethane		75-71-8	2.00	< 2.00	#
	Ethylbenzene		100-41-4	2.00	< 2.00	
	Isopropylbenzene		98-82-8	2.00	< 2.00	
Phone: (801) 263-8686	m,p-Xylene		179601-23-1	2.00	< 2.00	#
Toll Free: (888) 263-8686	Methyl Acetate		79-20-9	5.00	< 5.00	
Fax: (801) 263-8687	Methyl tert-butyl ether		1634-04-4	2.00	< 2.00	
e-mail: awal@awal-labs.com	Methylcyclohexane		108-87-2	2.00	< 2.00	#
	Methylene chloride		75-09-2	2.00	< 2.00	
web: www.awal-labs.com	Naphthalene		91-20-3	2.00	< 2.00	
	o-Xylene		95-47-6	2.00	< 2.00	
	Styrene		100-42-5	2.00	< 2.00	
Kyle F. Gross	Tetrachloroethene		127-18-4	2.00	< 2.00	
Laboratory Director	Toluene		108-88-3	2.00	< 2.00	
	trans-1,2-Dichloroethene		156-60-5	2.00	< 2.00	
Jose Rocha	trans-1,3-Dichloropropene		10061-02-6	2.00	< 2.00	
QA Officer	Trichloroethene		79-01-6	2.00	< 2.00	
	Trichlorofluoromethane		75-69-4	2.00	< 2.00	#
	Vinyl chloride		75-01-4	1.00	< 1.00	#
	Surrogate Units: μg/L	CAS	Result Amount S	Spiked % REC	Limits	Qual

Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	61.9	50.00	124	80-136	
Surr: 4-Brom	ofluorobenzene	460-00-4	46.9	50.00	93.8	85-121	
Surr: Dibrom	ofluoromethane	1868-53-7	58.8	50.00	118	78-132	
Surr: Tolueno	e-d8	2037-26-5	51.0	50.00	102	81-123	

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

Lab Sample ID: 2103307-005A

Client Sample ID: MW-19

Analytical Results

Collection Date: 3/10/2021 1410h **Received Date:** 3/10/2021 1705h

VOAs AWAL List by GC/MS Method 8260D/5030C

Test Code: 8260D-W

Analyzed: 3/11/2021 1421h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com web: www.awal-labs.com

> Kyle F. Gross Laboratory Director

> > Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	#
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Acetone	67-64-1	10.0	< 10.0	
Benzene	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	
Chloroform	67-66-3	2.00	< 2.00	L

Report Date: 3/16/2021 Page 12 of 29

Lab Sample ID: 2103307-005A **Client Sample ID:** MW-19

Analyzed: 3/11/2021 1421h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	Chloromethane	74-87-3	3.00	< 3.00	
	cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00	
	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00	
	Cyclohexane	110-82-7	2.00	< 2.00	#
3440 South 700 West	Dibromochloromethane	124-48-1	2.00	< 2.00	
alt Lake City, UT 84119	Dichlorodifluoromethane	75-71-8	2.00	< 2.00	#
	Ethylbenzene	100-41-4	2.00	< 2.00	
	Isopropylbenzene	98-82-8	2.00	< 2.00	
Phone: (801) 263-8686	m,p-Xylene	179601-23-1	2.00	< 2.00	#
Coll Free: (888) 263-8686	Methyl Acetate	79-20-9	5.00	< 5.00	
Fax: (801) 263-8687	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00	
mail: awal@awal-labs.com	Methylcyclohexane	108-87-2	2.00	< 2.00	#
	Methylene chloride	75-09-2	2.00	< 2.00	
veb: www.awal-labs.com	Naphthalene	91-20-3	2.00	< 2.00	
	o-Xylene	95-47-6	2.00	< 2.00	
	Styrene	100-42-5	2.00	< 2.00	
Kyle F. Gross	Tetrachloroethene	127-18-4	2.00	< 2.00	
Laboratory Director	Toluene	108-88-3	2.00	< 2.00	
	trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00	
Jose Rocha	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00	
QA Officer	Trichloroethene	79-01-6	2.00	< 2.00	
	Trichlorofluoromethane	75-69-4	2.00	< 2.00	#
	Vinyl chloride	75-01-4	1.00	< 1.00	#

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	60.7	50.00	121	80-136	
Surr: 4-Brom	nofluorobenzene	460-00-4	44.5	50.00	89.1	85-121	
Surr: Dibron	nofluoromethane	1868-53-7	58.3	50.00	117	78-132	
Surr: Toluen	e-d8	2037-26-5	50.4	50.00	101	81-123	

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

Lab Sample ID: 2103307-006A

Client Sample ID: MW-20

Collection Date: 3/10/2021 1500h **Received Date:** 3/10/2021 1705h

Analytical Results VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 3/11/2021 1441h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Laboratory Director

Jose Rocha QA Officer

Kyle F. Gross

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	#
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Acetone	67-64-1	10.0	< 10.0	
Benzene	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	
Chloroform	67-66-3	2.00	< 2.00	L

Report Date: 3/16/2021 Page 14 of 29

Test Code: 8260D-W

Lab Sample ID: 2103307-006A Client Sample ID: MW-20

Analyzed: 3/11/2021 1441h **Extracted:**

Units: µg/L **Dilution Factor:** 1 Method: SW8260D

American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	Chloromethane	74-87-3	3.00	< 3.00	
	cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00	
	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00	
	Cyclohexane	110-82-7	2.00	< 2.00	#
3440 South 700 West	Dibromochloromethane	124-48-1	2.00	< 2.00	
Salt Lake City, UT 84119	Dichlorodifluoromethane	75-71-8	2.00	< 2.00	#
	Ethylbenzene	100-41-4	2.00	< 2.00	
	Isopropylbenzene	98-82-8	2.00	< 2.00	
Phone: (801) 263-8686	m,p-Xylene	179601-23-1	2.00	< 2.00	#
Toll Free: (888) 263-8686	Methyl Acetate	79-20-9	5.00	< 5.00	
Fax: (801) 263-8687	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00	
e-mail: awal@awal-labs.com	Methylcyclohexane	108-87-2	2.00	< 2.00	#
	Methylene chloride	75-09-2	2.00	< 2.00	
web: www.awal-labs.com	Naphthalene	91-20-3	2.00	< 2.00	
	o-Xylene	95-47-6	2.00	< 2.00	
	Styrene	100-42-5	2.00	< 2.00	
Kyle F. Gross	Tetrachloroethene	127-18-4	2.00	< 2.00	
Laboratory Director	Toluene	108-88-3	2.00	< 2.00	
	trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00	
Jose Rocha	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00	
QA Officer	Trichloroethene	79-01-6	2.00	< 2.00	
	Trichlorofluoromethane	75-69-4	2.00	< 2.00	#
	Vinyl chloride	75-01-4	1.00	< 1.00	#
	Supposets Unite us/I	CAS Docult Amount 6	nikod % DEC	Limita	Onel

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	61.3	50.00	123	80-136	
Surr: 4-Brom	nofluorobenzene	460-00-4	44.3	50.00	88.5	85-121	
Surr: Dibrom	nofluoromethane	1868-53-7	59.3	50.00	119	78-132	
Surr: Toluene	e-d8	2037-26-5	50.8	50.00	102	81-123	

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners MW's 16-20 / 1210149

Lab Sample ID: 2103307-007A Client Sample ID: Trip Blank Collection Date: 3/10/2021

Received Date: 3/10/2021 1705h Test Code: 8260D-W

Analytical Results VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 3/11/2021 1500h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual	
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00		
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00		
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00		
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00		
1,1-Dichloroethane	75-34-3	2.00	< 2.00		
1,1-Dichloroethene	75-35-4	2.00	< 2.00		
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00		
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00		
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00		
1,2-Dibromoethane	106-93-4	2.00	< 2.00		
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00		
1,2-Dichloroethane	107-06-2	2.00	< 2.00		
1,2-Dichloropropane	78-87-5	2.00	< 2.00		
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00		
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00		
1,4-Dioxane	123-91-1	50.0	< 50.0	#	
2-Butanone	78-93-3	10.0	< 10.0		
2-Hexanone	591-78-6	5.00	< 5.00		
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00		
Acetone	67-64-1	10.0	< 10.0		
Benzene	71-43-2	2.00	< 2.00		
Bromochloromethane	74-97-5	2.00	< 2.00		
Bromodichloromethane	75-27-4	2.00	< 2.00		
Bromoform	75-25-2	2.00	< 2.00		
Bromomethane	74-83-9	5.00	< 5.00		
Carbon disulfide	75-15-0	2.00	< 2.00	#	
Carbon tetrachloride	56-23-5	2.00	< 2.00		
Chlorobenzene	108-90-7	2.00	< 2.00		
Chloroethane	75-00-3	2.00	< 2.00		
Chloroform	67-66-3	2.00	< 2.00	L	

Report Date: 3/16/2021 Page 16 of 29

Lab Sample ID: 2103307-007A **Client Sample ID:** Trip Blank

Analyzed: 3/11/2021 1500h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	Chloromethane	74-87-3	3.00	< 3.00	
	cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00	
	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00	
	Cyclohexane	110-82-7	2.00	< 2.00	#
3440 South 700 West	Dibromochloromethane	124-48-1	2.00	< 2.00	
Salt Lake City, UT 84119	Dichlorodifluoromethane	75-71-8	2.00	< 2.00	#
	Ethylbenzene	100-41-4	2.00	< 2.00	
	Isopropylbenzene	98-82-8	2.00	< 2.00	
Phone: (801) 263-8686	m,p-Xylene	179601-23-1	2.00	< 2.00	#
Toll Free: (888) 263-8686	Methyl Acetate	79-20-9	5.00	< 5.00	
Fax: (801) 263-8687	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00	
e-mail: awal@awal-labs.com	Methylcyclohexane	108-87-2	2.00	< 2.00	#
	Methylene chloride	75-09-2	2.00	< 2.00	
web: www.awal-labs.com	Naphthalene	91-20-3	2.00	< 2.00	
	o-Xylene	95-47-6	2.00	< 2.00	
	Styrene	100-42-5	2.00	< 2.00	
Kyle F. Gross	Tetrachloroethene	127-18-4	2.00	< 2.00	
Laboratory Director	Toluene	108-88-3	2.00	< 2.00	
T D 1	trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00	
Jose Rocha	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00	
QA Officer	Trichloroethene	79-01-6	2.00	< 2.00	
	Trichlorofluoromethane	75-69-4	2.00	< 2.00	#
	Vinyl chloride	75-01-4	1.00	< 1.00	#
	Surrogate Units: μg/L	CAS Result Amount S	Spiked % REC	Limits	Qual

Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	hloroethane-d4	17060-07-0	61.8	50.00	124	80-136	
Surr: 4-Brom	ofluorobenzene	460-00-4	46.4	50.00	92.8	85-121	
Surr: Dibrom	ofluoromethane	1868-53-7	59.1	50.00	118	78-132	
Surr: Toluene	e-d8	2037-26-5	51.8	50.00	104	81-123	

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Forsey's Cleaners MW's 16-20 / 1210149

Client:

Project:

Lab Set ID: 2103307

Contact: Joe DeGooyer

QC Type: LCS

MSVOA

Dept:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-1 031121A Test Code: 8260D-W	Date Analyzed:	03/11/20	21 955h										•
1,1,1-Trichloroethane	25.5	μg/L	SW8260D	0.326	2.00	20.00	0	127	72 - 132				
1,1,2,2-Tetrachloroethane	24.8	μg/L	SW8260D	0.164	2.00	20.00	0	124	68 - 140				
1,1,2-Trichloro-1,2,2-trifluoroethane	27.7	μg/L	SW8260D	1.59	2.00	20.00	0	138	54 - 174				
1,1,2-Trichloroethane	24.1	μg/L	SW8260D	0.143	2.00	20.00	0	120	88 - 126				
1,1-Dichloroethane	26.6	μg/L	SW8260D	1.15	2.00	20.00	0	133	78 - 142				
1,1-Dichloroethene	26.1	μg/L	SW8260D	0.782	2.00	20.00	0	131	37 - 144				
1,2,3-Trichlorobenzene	22.3	μg/L	SW8260D	1.08	2.00	20.00	0	112	60 - 136				
1,2,4-Trichlorobenzene	17.5	μg/L	SW8260D	1.30	2.00	20.00	0	87.4	45 - 138				
1,2-Dibromo-3-chloropropane	21.3	μg/L	SW8260D	0.295	5.00	20.00	0	106	71 - 129				
1,2-Dibromoethane	22.7	μg/L	SW8260D	0.232	2.00	20.00	0	114	77 - 124				
1,2-Dichlorobenzene	21.8	μg/L	SW8260D	0.155	2.00	20.00	0	109	70 - 130				
1,2-Dichloroethane	25.1	μg/L	SW8260D	0.144	2.00	20.00	0	126	76 - 132				
1,2-Dichloropropane	24.0	μg/L	SW8260D	0.262	2.00	20.00	0	120	81 - 135				
1,3-Dichlorobenzene	22.4	μg/L	SW8260D	0.191	2.00	20.00	0	112	71 - 139				
1,4-Dichlorobenzene	22.1	μg/L	SW8260D	0.229	2.00	20.00	0	111	67 - 138				
1,4-Dioxane	293	μg/L	SW8260D	21.5	50.0	200.0	0	147	42 - 171				
2-Butanone	34.8	$\mu g/L$	SW8260D	1.22	10.0	20.00	0	174	69 - 236				
2-Hexanone	20.6	$\mu g/L$	SW8260D	1.51	5.00	20.00	0	103	51 - 167				
4-Methyl-2-pentanone	23.1	$\mu g/L$	SW8260D	0.296	5.00	20.00	0	116	68 - 128				
Acetone	36.0	$\mu g/L$	SW8260D	2.76	10.0	20.00	0	180	36 - 198				
Benzene	24.5	μg/L	SW8260D	0.147	2.00	20.00	0	123	78 - 125				
Bromochloromethane	23.6	μg/L	SW8260D	0.592	2.00	20.00	0	118	80 - 130				
Bromodichloromethane	24.1	μg/L	SW8260D	0.138	2.00	20.00	0	120	85 - 123				
Bromoform	22.5	$\mu g/L$	SW8260D	0.151	2.00	20.00	0	113	65 - 122				
Bromomethane	20.8	$\mu g/L$	SW8260D	3.03	5.00	20.00	0	104	10 - 168				
Carbon disulfide	28.0	$\mu g/L$	SW8260D	0.800	2.00	20.00	0	140	34 - 178				
Carbon tetrachloride	25.4	$\mu g/L$	SW8260D	0.785	2.00	20.00	0	127	66 - 143				
Chlorobenzene	23.7	μg/L	SW8260D	0.154	2.00	20.00	0	118	74 - 126				

Report Date: 3/16/2021 Page 18 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** LCS

Project: Forsey's Cleaners MW's 16-20 / 1210149

Applied Geotechnical

Client:

Lab Set ID: 2103307

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-1 031121ATest Code:8260D-W	Date Analyzed:	03/11/20	21 955h										
Chloroethane	21.9	μg/L	SW8260D	1.37	2.00	20.00	0	110	45 - 154				
Chloroform	24.8	μg/L	SW8260D	0.360	2.00	20.00	0	124	74 - 120				L
Chloromethane	17.2	μg/L	SW8260D	0.682	3.00	20.00	0	85.9	30 - 149				
cis-1,2-Dichloroethene	24.4	μg/L	SW8260D	0.188	2.00	20.00	0	122	70 - 132				
cis-1,3-Dichloropropene	24.6	μg/L	SW8260D	0.792	2.00	20.00	0	123	84 - 123				
Cyclohexane	23.9	μg/L	SW8260D	0.812	2.00	20.00	0	120	43 - 181				
Dibromochloromethane	22.5	μg/L	SW8260D	0.132	2.00	20.00	0	113	75 - 123				
Dichlorodifluoromethane	14.6	μg/L	SW8260D	0.422	2.00	20.00	0	72.9	10 - 165				
Ethylbenzene	23.1	μg/L	SW8260D	0.164	2.00	20.00	0	116	67 - 130				
Isopropylbenzene	20.6	μg/L	SW8260D	0.671	2.00	20.00	0	103	68 - 147				
m,p-Xylene	49.3	μg/L	SW8260D	0.556	2.00	40.00	0	123	69 - 142				
Methyl Acetate	53.4	μg/L	SW8260D	1.27	5.00	20.00	0	267	87 - 300				
Methyl tert-butyl ether	24.2	μg/L	SW8260D	1.26	2.00	20.00	0	121	58 - 135				
Methylcyclohexane	25.3	$\mu g/L$	SW8260D	0.528	2.00	20.00	0	126	55 - 151				
Methylene chloride	25.7	μg/L	SW8260D	0.451	2.00	20.00	0	128	65 - 154				
Naphthalene	17.6	$\mu g/L$	SW8260D	0.730	2.00	20.00	0	87.8	55 - 128				
o-Xylene	22.0	$\mu g/L$	SW8260D	0.153	2.00	20.00	0	110	70 - 142				
Styrene	20.4	μg/L	SW8260D	0.570	2.00	20.00	0	102	71 - 135				
Tetrachloroethene	24.5	μg/L	SW8260D	0.458	2.00	20.00	0	123	58 - 149				
Toluene	22.9	μg/L	SW8260D	0.277	2.00	20.00	0	115	69 - 129				
trans-1,2-Dichloroethene	25.4	$\mu g/L$	SW8260D	0.282	2.00	20.00	0	127	70 - 134				
trans-1,3-Dichloropropene	24.1	μg/L	SW8260D	0.772	2.00	20.00	0	121	63 - 132				
Trichloroethene	25.0	μg/L	SW8260D	0.180	2.00	20.00	0	125	72 - 136				
Trichlorofluoromethane	21.4	$\mu g/L$	SW8260D	0.375	2.00	20.00	0	107	59 - 152				
Vinyl chloride	18.9	$\mu g/L$	SW8260D	0.205	1.00	20.00	0	94.6	43 - 152				
Surr: 1,2-Dichloroethane-d4	55.5	$\mu g/L$	SW8260D			50.00		111	80 - 136				
Surr: 4-Bromofluorobenzene	45.2	$\mu g/L$	SW8260D			50.00		90.4	85 - 121				
Surr: Dibromofluoromethane	54.0	$\mu g/L$	SW8260D			50.00		108	78 - 132				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Lab Set ID: 2103307

Client:

Project: Forsey's Cleaners MW's 16-20 / 1210149

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-1 031121ATest Code:8260D-W	Date Analyzed:	03/11/202	1 955h										
Surr: Toluene-d8	50.5	$\mu g/L$	SW8260D			50.00		101	81 - 123				
Lab Sample ID: LCS VOC-1 031221A Test Code: 8260D-W	Date Analyzed:	03/12/202	1 637h										
Tetrachloroethene	23.8	μg/L	SW8260D	0.458	2.00	20.00	0	119	58 - 149				
Surr: 1,2-Dichloroethane-d4	57.5	$\mu g/L$	SW8260D			50.00		115	80 - 136				
Surr: 4-Bromofluorobenzene	45.4	$\mu g/L$	SW8260D			50.00		90.7	85 - 121				
Surr: Dibromofluoromethane	56.3	$\mu g/L$	SW8260D			50.00		113	78 - 132				
Surr: Toluene-d8	49.7	μg/L	SW8260D			50.00		99.4	81 - 123				

L - High LCS recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

Report Date: 3/16/2021 Page 20 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Contact: Joe DeGooyer

> Dept: **MSVOA** QC Type: MBLK

Lab Set ID: 2103307 Forsey's Cleaners MW's 16-20 / 1210149 **Project:**

Applied Geotechnical

Client:

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
_	MB VOC-1 031121A	Date Analyzed:	03/11/20	21 1015h										
Test Code:	8260D-W													
1,1,1-Trichloroetha	ane	< 2.00	$\mu g/L$	SW8260D	0.326	2.00								
1,1,2,2-Tetrachloro	oethane	< 2.00	$\mu g/L$	SW8260D	0.164	2.00								
1,1,2-Trichloro-1,2	2,2-trifluoroethane	< 2.00	$\mu g/L$	SW8260D	1.59	2.00								
1,1,2-Trichloroetha	ane	< 2.00	$\mu g/L$	SW8260D	0.143	2.00								
1,1-Dichloroethan	e	< 2.00	$\mu g/L$	SW8260D	1.15	2.00								
1,1-Dichloroethene	e	< 2.00	$\mu g/L$	SW8260D	0.782	2.00								
1,2,3-Trichloroben	nzene	< 2.00	$\mu g/L$	SW8260D	1.08	2.00								
1,2,4-Trichloroben	nzene	< 2.00	$\mu g/L$	SW8260D	1.30	2.00								
1,2-Dibromo-3-ch	loropropane	< 5.00	$\mu g/L$	SW8260D	0.295	5.00								
1,2-Dibromoethan	ie	< 2.00	$\mu g/L$	SW8260D	0.232	2.00								
1,2-Dichlorobenze	ene	< 2.00	$\mu g/L$	SW8260D	0.155	2.00								
1,2-Dichloroethan	e	< 2.00	$\mu g/L$	SW8260D	0.144	2.00								
1,2-Dichloropropa	nne	< 2.00	$\mu g/L$	SW8260D	0.262	2.00								
1,3-Dichlorobenze	ene	< 2.00	$\mu g/L$	SW8260D	0.191	2.00								
1,4-Dichlorobenze	ene	< 2.00	$\mu g/L$	SW8260D	0.229	2.00								
1,4-Dioxane		< 50.0	$\mu g/L$	SW8260D	21.5	50.0								
2-Butanone		< 10.0	$\mu g/L$	SW8260D	1.22	10.0								
2-Hexanone		< 5.00	$\mu g/L$	SW8260D	1.51	5.00								
4-Methyl-2-pentan	none	< 5.00	$\mu g/L$	SW8260D	0.296	5.00								
Acetone		< 10.0	$\mu g/L$	SW8260D	2.76	10.0								
Benzene		< 2.00	$\mu g/L$	SW8260D	0.147	2.00								
Bromochlorometha	ane	< 2.00	$\mu g/L$	SW8260D	0.592	2.00								
Bromodichloromet	thane	< 2.00	$\mu g/L$	SW8260D	0.138	2.00								
Bromoform		< 2.00	$\mu g/L$	SW8260D	0.151	2.00								
Bromomethane		< 5.00	$\mu g/L$	SW8260D	3.03	5.00								
Carbon disulfide		< 2.00	$\mu g/L$	SW8260D	0.800	2.00								
Carbon tetrachloric	de	< 2.00	$\mu g/L$	SW8260D	0.785	2.00								
Chlorobenzene		< 2.00	$\mu g/L$	SW8260D	0.154	2.00								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

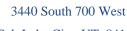
Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK


 Lab Set ID: 2103307
 Dept:

 Project: Forsey's Cleaners MW's 16-20 / 1210149
 QC Ty

Applied Geotechnical

Client:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-1 031121A	Date Analyzed:	03/11/20	21 1015h										
Test Code: 8260D-W													
Chloroethane	< 2.00	$\mu g/L$	SW8260D	1.37	2.00								
Chloroform	< 2.00	$\mu g/L$	SW8260D	0.360	2.00								
Chloromethane	< 3.00	$\mu g/L$	SW8260D	0.682	3.00								
cis-1,2-Dichloroethene	< 2.00	$\mu g/L$	SW8260D	0.188	2.00								
cis-1,3-Dichloropropene	< 2.00	$\mu g/L$	SW8260D	0.792	2.00								
Cyclohexane	< 2.00	$\mu g/L$	SW8260D	0.812	2.00								
Dibromochloromethane	< 2.00	$\mu g/L$	SW8260D	0.132	2.00								
Dichlorodifluoromethane	< 2.00	$\mu g/L$	SW8260D	0.422	2.00								
Ethylbenzene	< 2.00	$\mu g/L$	SW8260D	0.164	2.00								
Isopropylbenzene	< 2.00	$\mu g/L$	SW8260D	0.671	2.00								
m,p-Xylene	< 2.00	$\mu g/L$	SW8260D	0.556	2.00								
Methyl Acetate	< 5.00	$\mu g/L$	SW8260D	1.27	5.00								
Methyl tert-butyl ether	< 2.00	$\mu g/L$	SW8260D	1.26	2.00								
Methylcyclohexane	< 2.00	$\mu g/L$	SW8260D	0.528	2.00								
Methylene chloride	< 2.00	$\mu g/L$	SW8260D	0.451	2.00								
Naphthalene	< 2.00	$\mu g/L$	SW8260D	0.730	2.00								
o-Xylene	< 2.00	$\mu g/L$	SW8260D	0.153	2.00								
Styrene	< 2.00	$\mu g/L$	SW8260D	0.570	2.00								
Tetrachloroethene	< 2.00	$\mu g/L$	SW8260D	0.458	2.00								
Toluene	< 2.00	$\mu g/L$	SW8260D	0.277	2.00								
trans-1,2-Dichloroethene	< 2.00	$\mu g/L$	SW8260D	0.282	2.00								
trans-1,3-Dichloropropene	< 2.00	$\mu g/L$	SW8260D	0.772	2.00								
Trichloroethene	< 2.00	$\mu g/L$	SW8260D	0.180	2.00								
Trichlorofluoromethane	< 2.00	$\mu g/L$	SW8260D	0.375	2.00								
Vinyl chloride	< 1.00	$\mu g/L$	SW8260D	0.205	1.00								
Surr: 1,2-Dichloroethane-d4	58.8	$\mu g/L$	SW8260D			50.00		118	80 - 136				
Surr: 4-Bromofluorobenzene	47.2	$\mu g/L$	SW8260D			50.00		94.3	85 - 121				
Surr: Dibromofluoromethane	56.9	$\mu g/L$	SW8260D			50.00		114	78 - 121				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Forsey's Cleaners MW's 16-20 / 1210149

Client:

Project:

Lab Set ID: 2103307

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-1 031121ATest Code:8260D-W	Date Analyzed:	03/11/202	21 1015h										
Surr: Toluene-d8	50.3	$\mu g/L$	SW8260D			50.00		101	81 - 123				
Lab Sample ID:MB VOC-1 031221ATest Code:8260D-W	Date Analyzed:	03/12/202	21 656h										•
Tetrachloroethene	< 2.00	μg/L	SW8260D	0.458	2.00								
Surr: 1,2-Dichloroethane-d4	57.9	$\mu g/L$	SW8260D			50.00		116	80 - 136				
Surr: 4-Bromofluorobenzene	44.5	$\mu g/L$	SW8260D			50.00		89.0	85 - 121				
Surr: Dibromofluoromethane	57.2	$\mu g/L$	SW8260D			50.00		114	78 - 121				
Surr: Toluene-d8	50.0	$\mu g/L$	SW8260D			50.00		100	81 - 123				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Forsey's Cleaners MW's 16-20 / 1210149

Client:

Project:

Lab Set ID: 2103307

Contact: Joe DeGooyer

QC Type: MS

MSVOA

Dept:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103307-001AMS Test Code: 8260D-W	Date Analyzed:	03/11/20	21 1203h										
1,1,1-Trichloroethane	25.0	μg/L	SW8260D	0.326	2.00	20.00	0	125	72 - 132				
1,1,2,2-Tetrachloroethane	22.9	μg/L	SW8260D	0.164	2.00	20.00	0	114	68 - 140				
1,1,2-Trichloro-1,2,2-trifluoroethane	26.9	$\mu g/L$	SW8260D	1.59	2.00	20.00	0	135	54 - 174				
1,1,2-Trichloroethane	21.8	$\mu g/L$	SW8260D	0.143	2.00	20.00	0	109	88 - 126				
1,1-Dichloroethane	26.0	$\mu g/L$	SW8260D	1.15	2.00	20.00	0	130	78 - 142				
1,1-Dichloroethene	25.2	$\mu g/L$	SW8260D	0.782	2.00	20.00	0	126	37 - 144				
1,2,3-Trichlorobenzene	19.1	μg/L	SW8260D	1.08	2.00	20.00	0	95.6	60 - 136				
1,2,4-Trichlorobenzene	14.9	$\mu g/L$	SW8260D	1.30	2.00	20.00	0	74.4	45 - 138				
1,2-Dibromo-3-chloropropane	18.7	$\mu g/L$	SW8260D	0.295	5.00	20.00	0	93.4	71 - 129				
1,2-Dibromoethane	20.5	$\mu g/L$	SW8260D	0.232	2.00	20.00	0	102	77 - 124				
1,2-Dichlorobenzene	20.1	μg/L	SW8260D	0.155	2.00	20.00	0	100	70 - 130				
1,2-Dichloroethane	23.7	$\mu g/L$	SW8260D	0.144	2.00	20.00	0	118	76 - 132				
1,2-Dichloropropane	22.5	$\mu g/L$	SW8260D	0.262	2.00	20.00	0	112	81 - 135				
1,3-Dichlorobenzene	20.0	$\mu g/L$	SW8260D	0.191	2.00	20.00	0	100	71 - 139				
1,4-Dichlorobenzene	20.5	$\mu g/L$	SW8260D	0.229	2.00	20.00	0	103	67 - 138				
1,4-Dioxane	219	$\mu g/L$	SW8260D	21.5	50.0	200.0	0	109	42 - 171				
2-Butanone	30.1	$\mu g/L$	SW8260D	1.22	10.0	20.00	0	150	69 - 236				
2-Hexanone	17.5	$\mu g/L$	SW8260D	1.51	5.00	20.00	0	87.6	51 - 167				
4-Methyl-2-pentanone	21.8	$\mu g/L$	SW8260D	0.296	5.00	20.00	0	109	68 - 128				
Acetone	29.0	$\mu g/L$	SW8260D	2.76	10.0	20.00	0	145	36 - 198				
Benzene	22.9	$\mu g/L$	SW8260D	0.147	2.00	20.00	0	115	78 - 125				
Bromochloromethane	22.6	$\mu g/L$	SW8260D	0.592	2.00	20.00	0	113	80 - 130				
Bromodichloromethane	23.0	$\mu g/L$	SW8260D	0.138	2.00	20.00	0	115	85 - 123				
Bromoform	20.4	$\mu g/L$	SW8260D	0.151	2.00	20.00	0	102	65 - 122				
Bromomethane	17.4	$\mu g/L$	SW8260D	3.03	5.00	20.00	0	87.0	10 - 168				
Carbon disulfide	29.4	$\mu g/L$	SW8260D	0.800	2.00	20.00	0	147	34 - 178				
Carbon tetrachloride	25.1	$\mu g/L$	SW8260D	0.785	2.00	20.00	0	125	66 - 143				
Chlorobenzene	21.9	$\mu g/L$	SW8260D	0.154	2.00	20.00	0	109	74 - 126				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MS

Project: Forsey's Cleaners MW's 16-20 / 1210149

Applied Geotechnical

Client:

Lab Set ID: 2103307

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103307-001AMS	Date Analyzed:	03/11/20	21 1203h										
Test Code: 8260D-W													
Chloroethane	20.9	μg/L	SW8260D	1.37	2.00	20.00	0	104	45 - 154				
Chloroform	24.6	μg/L	SW8260D	0.360	2.00	20.00	0	123	74 - 120				L
Chloromethane	16.0	$\mu g/L$	SW8260D	0.682	3.00	20.00	0	80.2	30 - 149				
cis-1,2-Dichloroethene	22.9	$\mu g/L$	SW8260D	0.188	2.00	20.00	0	114	70 - 132				
cis-1,3-Dichloropropene	20.4	$\mu g/L$	SW8260D	0.792	2.00	20.00	0	102	84 - 123				
Cyclohexane	21.7	$\mu g/L$	SW8260D	0.812	2.00	20.00	0	108	43 - 181				
Dibromochloromethane	20.5	μg/L	SW8260D	0.132	2.00	20.00	0	103	75 - 123				
Dichlorodifluoromethane	14.4	μg/L	SW8260D	0.422	2.00	20.00	0	72.0	10 - 165				
Ethylbenzene	20.9	μg/L	SW8260D	0.164	2.00	20.00	0	105	67 - 130				
Isopropylbenzene	18.2	μg/L	SW8260D	0.671	2.00	20.00	0	91.2	68 - 147				
m,p-Xylene	44.8	$\mu g/L$	SW8260D	0.556	2.00	40.00	0	112	69 - 142				
Methyl Acetate	49.6	$\mu g/L$	SW8260D	1.27	5.00	20.00	0	248	87 - 300				
Methyl tert-butyl ether	22.9	$\mu g/L$	SW8260D	1.26	2.00	20.00	0	115	58 - 135				
Methylcyclohexane	23.4	$\mu g/L$	SW8260D	0.528	2.00	20.00	0	117	55 - 151				
Methylene chloride	25.2	$\mu g/L$	SW8260D	0.451	2.00	20.00	0	126	65 - 154				
Naphthalene	14.4	$\mu g/L$	SW8260D	0.730	2.00	20.00	0	72.0	55 - 128				
o-Xylene	19.4	$\mu g/L$	SW8260D	0.153	2.00	20.00	0	97.0	70 - 142				
Styrene	18.2	$\mu g/L$	SW8260D	0.570	2.00	20.00	0	91.2	71 - 135				
Tetrachloroethene	23.0	$\mu g/L$	SW8260D	0.458	2.00	20.00	0	115	58 - 149				
Toluene	21.1	$\mu g/L$	SW8260D	0.277	2.00	20.00	0	106	69 - 129				
trans-1,2-Dichloroethene	24.5	$\mu g/L$	SW8260D	0.282	2.00	20.00	0	122	70 - 134				
trans-1,3-Dichloropropene	22.0	$\mu g/L$	SW8260D	0.772	2.00	20.00	0	110	63 - 132				
Trichloroethene	24.0	$\mu g/L$	SW8260D	0.180	2.00	20.00	0	120	72 - 136				
Trichlorofluoromethane	21.0	$\mu g/L$	SW8260D	0.375	2.00	20.00	0	105	59 - 152				
Vinyl chloride	18.1	$\mu g/L$	SW8260D	0.205	1.00	20.00	0	90.6	43 - 152				
Surr: 1,2-Dichloroethane-d4	57.8	$\mu g/L$	SW8260D			50.00		116	80 - 136				
Surr: 4-Bromofluorobenzene	44.8	$\mu g/L$	SW8260D			50.00		89.7	85 - 121				
Surr: Dibromofluoromethane	56.2	$\mu g/L$	SW8260D			50.00		112	78 - 132				

Client:

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical Contact: Joe DeGooyer

Lab Set ID: 2103307Dept: MSVOAProject: Forsey's Cleaners MW's 16-20 / 1210149QC Type: MS

Reporting Amount Spike Ref. RPD Ref. RPD

Analyte	Result	Units	Method	MDL	Limit	Amount Spiked	Amount	%REC	Limits	Amt	% RPD	Limit	Qual
Lab Sample ID: 2103307-001AMS Test Code: 8260D-W	Date Analyzed:	03/11/2021	1203h										
Surr: Toluene-d8	49.2	μg/L	SW8260D			50.00		98.4	81 - 123				

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Forsey's Cleaners MW's 16-20 / 1210149

Client:

Project:

Lab Set ID: 2103307

Contact: Joe DeGooyer

QC Type: MSD

MSVOA

Dept:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103307-001AMSD Test Code: 8260D-W	Date Analyzed:	03/11/20	21 1223h										
1,1,1-Trichloroethane	26.3	μg/L	SW8260D	0.326	2.00	20.00	0	131	72 - 132	25.1	4.83	35	
1,1,2,2-Tetrachloroethane	24.8	μg/L	SW8260D	0.164	2.00	20.00	0	124	68 - 140	22.9	7.98	35	
1,1,2-Trichloro-1,2,2-trifluoroethane	28.0	μg/L	SW8260D	1.59	2.00	20.00	0	140	54 - 174	26.9	3.75	35	
1,1,2-Trichloroethane	23.6	μg/L	SW8260D	0.143	2.00	20.00	0	118	88 - 126	21.8	8.06	35	
1,1-Dichloroethane	27.4	μg/L	SW8260D	1.15	2.00	20.00	0	137	78 - 142	26	5.43	35	
1,1-Dichloroethene	27.1	μg/L	SW8260D	0.782	2.00	20.00	0	136	37 - 144	25.2	7.29	35	
1,2,3-Trichlorobenzene	20.9	μg/L	SW8260D	1.08	2.00	20.00	0	104	60 - 136	19.1	8.76	35	
1,2,4-Trichlorobenzene	16.3	μg/L	SW8260D	1.30	2.00	20.00	0	81.6	45 - 138	14.9	9.24	35	
1,2-Dibromo-3-chloropropane	20.8	μg/L	SW8260D	0.295	5.00	20.00	0	104	71 - 129	18.7	11.0	35	
1,2-Dibromoethane	22.3	μg/L	SW8260D	0.232	2.00	20.00	0	112	77 - 124	20.5	8.69	35	
1,2-Dichlorobenzene	21.4	μg/L	SW8260D	0.155	2.00	20.00	0	107	70 - 130	20.1	6.17	35	
1,2-Dichloroethane	25.0	μg/L	SW8260D	0.144	2.00	20.00	0	125	76 - 132	23.7	5.30	35	
1,2-Dichloropropane	24.0	$\mu g/L$	SW8260D	0.262	2.00	20.00	0	120	81 - 135	22.5	6.42	35	
1,3-Dichlorobenzene	21.6	$\mu g/L$	SW8260D	0.191	2.00	20.00	0	108	71 - 139	20	7.72	35	
1,4-Dichlorobenzene	21.9	$\mu g/L$	SW8260D	0.229	2.00	20.00	0	110	67 - 138	20.5	6.55	35	
1,4-Dioxane	269	$\mu g/L$	SW8260D	21.5	50.0	200.0	0	134	42 - 171	219	20.6	35	
2-Butanone	31.6	$\mu g/L$	SW8260D	1.22	10.0	20.00	0	158	69 - 236	30.1	4.83	35	
2-Hexanone	17.9	$\mu g/L$	SW8260D	1.51	5.00	20.00	0	89.6	51 - 167	17.5	2.20	35	
4-Methyl-2-pentanone	22.2	$\mu g/L$	SW8260D	0.296	5.00	20.00	0	111	68 - 128	21.8	1.77	35	
Acetone	28.4	$\mu g/L$	SW8260D	2.76	10.0	20.00	0	142	36 - 198	29	2.40	35	
Benzene	24.7	$\mu g/L$	SW8260D	0.147	2.00	20.00	0	123	78 - 125	22.9	7.35	35	
Bromochloromethane	24.4	$\mu g/L$	SW8260D	0.592	2.00	20.00	0	122	80 - 130	22.6	7.65	35	
Bromodichloromethane	24.6	$\mu g/L$	SW8260D	0.138	2.00	20.00	0	123	85 - 123	23	6.47	35	
Bromoform	22.6	$\mu g/L$	SW8260D	0.151	2.00	20.00	0	113	65 - 122	20.4	10.2	35	
Bromomethane	17.4	$\mu g/L$	SW8260D	3.03	5.00	20.00	0	86.8	10 - 168	17.4	0.173	35	
Carbon disulfide	28.9	$\mu g/L$	SW8260D	0.800	2.00	20.00	0	144	34 - 178	29.4	1.89	35	
Carbon tetrachloride	26.1	$\mu g/L$	SW8260D	0.785	2.00	20.00	0	130	66 - 143	25.1	3.91	35	
Chlorobenzene	23.4	$\mu g/L$	SW8260D	0.154	2.00	20.00	0	117	74 - 126	21.9	6.80	35	

Report Date: 3/16/2021 Page 27 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Forsey's Cleaners MW's 16-20 / 1210149

Client:

Project:

Lab Set ID: 2103307

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103307-001AMSD Test Code: 8260D-W	Date Analyzed:	03/11/20	21 1223h										
Chloroethane	21.0	μg/L	SW8260D	1.37	2.00	20.00	0	105	45 - 154	20.9	0.763	35	
Chloroform	25.6	μg/L	SW8260D	0.360	2.00	20.00	0	128	74 - 120	24.6	4.18	35	L
Chloromethane	16.8	μg/L	SW8260D	0.682	3.00	20.00	0	84.1	30 - 149	16	4.75	35	
cis-1,2-Dichloroethene	22.0	μg/L	SW8260D	0.188	2.00	20.00	0	110	70 - 132	22.9	3.78	35	
cis-1,3-Dichloropropene	21.9	μg/L	SW8260D	0.792	2.00	20.00	0	109	84 - 123	20.4	7.05	35	
Cyclohexane	20.4	μg/L	SW8260D	0.812	2.00	20.00	0	102	43 - 181	21.7	5.99	35	
Dibromochloromethane	22.1	μg/L	SW8260D	0.132	2.00	20.00	0	110	75 - 123	20.5	7.47	35	
Dichlorodifluoromethane	15.1	μg/L	SW8260D	0.422	2.00	20.00	0	75.4	10 - 165	14.4	4.54	35	
Ethylbenzene	22.6	μg/L	SW8260D	0.164	2.00	20.00	0	113	67 - 130	20.9	7.72	35	
Isopropylbenzene	19.8	μg/L	SW8260D	0.671	2.00	20.00	0	99.2	68 - 147	18.2	8.45	35	
m,p-Xylene	48.3	μg/L	SW8260D	0.556	2.00	40.00	0	121	69 - 142	44.8	7.51	35	
Methyl Acetate	53.4	μg/L	SW8260D	1.27	5.00	20.00	0	267	87 - 300	49.6	7.28	35	
Methyl tert-butyl ether	23.1	μg/L	SW8260D	1.26	2.00	20.00	0	116	58 - 135	22.9	0.695	35	
Methylcyclohexane	24.8	μg/L	SW8260D	0.528	2.00	20.00	0	124	55 - 151	23.4	5.60	35	
Methylene chloride	26.2	μg/L	SW8260D	0.451	2.00	20.00	0	131	65 - 154	25.2	3.89	35	
Naphthalene	16.2	μg/L	SW8260D	0.730	2.00	20.00	0	81.1	55 - 128	14.4	11.9	35	
o-Xylene	21.4	μg/L	SW8260D	0.153	2.00	20.00	0	107	70 - 142	19.4	9.90	35	
Styrene	19.7	μg/L	SW8260D	0.570	2.00	20.00	0	98.4	71 - 135	18.3	7.54	35	
Tetrachloroethene	24.2	μg/L	SW8260D	0.458	2.00	20.00	0	121	58 - 149	23	5.38	35	
Toluene	22.8	μg/L	SW8260D	0.277	2.00	20.00	0	114	69 - 129	21.1	7.70	35	
trans-1,2-Dichloroethene	25.8	μg/L	SW8260D	0.282	2.00	20.00	0	129	70 - 134	24.5	5.29	35	
trans-1,3-Dichloropropene	23.9	μg/L	SW8260D	0.772	2.00	20.00	0	119	63 - 132	22	8.20	35	
Trichloroethene	25.4	μg/L	SW8260D	0.180	2.00	20.00	0	127	72 - 136	24	5.51	35	
Trichlorofluoromethane	21.8	μg/L	SW8260D	0.375	2.00	20.00	0	109	59 - 152	21	3.70	35	
Vinyl chloride	19.5	μg/L	SW8260D	0.205	1.00	20.00	0	97.6	43 - 152	18.1	7.49	35	
Surr: 1,2-Dichloroethane-d4	56.7	μg/L	SW8260D			50.00		113	80 - 136				
Surr: 4-Bromofluorobenzene	45.1	μg/L	SW8260D			50.00		90.3	85 - 121				
Surr: Dibromofluoromethane	55.4	μg/L	SW8260D			50.00		111	78 - 132				

Report Date: 3/16/2021 Page 28 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Applied Geotechnical

Lab Set ID: 2103307

Project: Forsey's C.

Client:

Forsey's Cleaners MW's 16-20 / 1210149

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2103307-001AMSD Test Code: 8260D-W	Date Analyzed:	03/11/202	21 1223h										
Surr: Toluene-d8	49.4	μg/L	SW8260D			50.00		98.9	81 - 123				

L - High LCS, MS, and MSD recoveries indicate possible bias high. Data deemed acceptable as the analyte was not observed in the field sample.

American West Analytical Laboratories

5 Day Rush (after 4pm); QC 2+;

5 Day Rush

WORK ORDER Summary

Work Order: **2103307**

Page 1 of 1

Client:

Applied Geotechnical

Rpt Emailed:

Due Date: 3/18/2021

Client ID:

APP100

Contact:

Joe DeGooyer

Project:

Comments:

Forsey's Cleaners MW's 16-20 / 1210149

QC Level:

 Π +

WO Type: Standard

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
2103307-001A	MW-16	3/10/2021 1225h	3/10/2021 1705h	8260D-W Test Group: 82601	Aqueous D-W-AWAL; # of Analytes: 53 / # o	of Surr: 4	VOCFridge	3
2103307-002A	MW-17	3/10/2021 1300h	3/10/2021 1705h	8260D-W	Aqueous	V	VOCFridge	3

2103307-002A	MW-17	3/10/2021 1300h	3/10/2021 1705h	8260D-W Test Group: 8260	Aqueous D-W-AWAL; # of Analytes: 53 / # of	Surr: 4	VOCFridge	3
2103307-003A	MW-17 Duplicate	3/10/2021 1310h	3/10/2021 1705h	8260D-W Test Group: 8260.	Aqueous D-W-AWAL; # of Analytes: 53 / # of	Surr: 4	VOCFridge	3
2103307-004A	MW-18	3/10/2021 1336h	3/10/2021 1705h	8260D-W Test Group: 8260.	Aqueous D-W-AWAL; # of Analytes: 53 / # of	Surr: 4	VOCFridge	3
2103307-005A	MW-19	3/10/2021 1410h	3/10/2021 1705h	8260D-W Test Group: 8260.	Aqueous D-W-AWAL; # of Analytes: 53 / # of	Surr: 4	VOCFridge	3
2103307-006A	MW-20	3/10/2021 1500h	3/10/2021 1705h	8260D-W Test Group: 8260.	Aqueous D-W-AWAL; # of Analytes: 53 / # of	Surr: 4	VOCFridge	3
2103307-007A	Trip Blank	3/10/2021	3/10/2021 1705h	8260D-W Test Group: 8260	Aqueous D-W-AWAL; # of Analytes: 53 / # of	Surr: 4	VOCFridge	3

CN 🔲

HOK

Address: City, State, Zip:

> Contact: Phone #:

> > E-mail:

PO #:

Project Name: Project #:

Sampler Name:

Relinquished by:

Print Name: Relinquished by:

Signature

Print Name:

American West Analytical Laboratories

Fax # (801) 263-8687 Email awal@awal-labs.com www.awal-labs.com

OFOPS HATU

Forsey's again MW's 10-20

Date

Sampled

3/10/21

3/ ioly

3/10/21

3/10/21

1ate: 3/10/21 Time: 5308

Time:

Date:

1:10

Phone #

De Googer

roed e drecine com

Joe DeGomes

MW- 17 Dunlies

Blank

Sample Site ID:

mw-lle MW-17

MW-18

MW-M MW-10

1210149

S. 700 W. Salt Lake City, UT 84119	All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and repor
(801) 263-8686 Toll Free # (888) 263-8686	limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.

CHAIN OF CUSTODY

	All a	nalysis	will be o	onduct nits (PQ	ed usin (L) unle	g NELA ss speci	AP accre fically r	edited m equeste	nethods d other	and all wise on	data wi this Cha	ll be rep ain of C	ported using AWAL's standard analyte lists and reporti Custody and/or attached documentation.	AWAL Lab Sample Set # Page of	
	QC Level:						Turn Around Time:					Rush sets received after 4:00 pm are considered received on the next business day.	Due Date: 3/10		
Time Sampled 12:25pm 1:30 pm 1:30 pm 3:00 pm	1 1 1 1 2 2 2 2 Containers	8 8 8 8 8 8 Sample Matrix	500 1301										Report down to the MDL Include EDD: Lab Filter for: Field Filtered For: For Compliance With: NELAP RCRA SDWA SDWA LAP/AZLA NLLAP Non-Compliance Other: Known Hazards & Sample Comments	Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due. Laboratory Use Only COC Tape Was: 1 Present on Outer Package Y N NA 2 Unbroken on Outer Package Y N NA 3 Present on Sample Y N NA 4 Unbroken on Sample Y N NA Samples Were: 1 Shipped or land delivered 2 Ambient of Chilled 3 Temperature 4 Received Intact Y N Checked at bench 6 Received Within folding Times Y N	
						-								Sample Labels and COC Record Match?	
Received by: Signature Print Name: Received by: Signature Print Name: Received by:	U/1 7.0	M Įdz	UNA X	rd	Ø.	ls				Date: Date: Date: Date:	10/2 70°	S S	Special Instructions:		
Signature									-	Time:					